ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of non-adiabatic losses of molecules from chip-based microtraps

110   0   0.0 ( 0 )
 نشر من قبل Samuel Meek
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polar molecules in selected quantum states can be guided, decelerated and trapped using electric fields created by microstructured electrodes on a chip. Here we explore how non-adiabatic transitions between levels in which the molecules are trapped and levels in which the molecules are not trapped can be suppressed. We use 12-CO and 13-CO (a 3-Pi(1), v=0) molecules, prepared in the upper Lambda-doublet component of the J=1 rotational level, and study the trap loss as a function of an offset magnetic field. The experimentally observed suppression (enhancement) of the non-adiabatic transitions for 12-CO (13-CO) with increasing magnetic field is quantitatively explained.



قيم البحث

اقرأ أيضاً

The decay of Rydberg-atom-ion molecules (RAIMs) due to non-adiabatic couplings between electronic potential energy surfaces is investigated. We employ the Born-Huang representation and perform numerical simulations using a Crank-Nicolson algorithm. T he non-adiabatic lifetimes of rubidium RAIMs for the lowest ten vibrational states, $ u$, are computed for selected Rydberg principal quantum numbers, $n$. The non-adiabatic lifetimes are found to generally exceed the radiative Rydberg-atom lifetimes. We observe and explain a trend of the lifetimes as a function of $ u$ and $n$, and attribute irregularities to quantum interference arising from a shallow potential well in an inner potential surface. Our results will be useful for future spectroscopic studies of RAIMs.
Non-adiabatic decay rates for a radio-frequency dressed magnetic trap are calculated using Fermis Golden Rule: that is, we examine the probability for a single atom to make transitions out of the dressed trap and into a continuum in the adiabatic lim it, where perturbation theory can be applied. This approach can be compared to the semi-classical Landau-Zener theory of a resonant dressed atom trap, and it is found that, when carefully implemented, the Landau-Zener theory overestimates the rate of non-adiabatic spin flip transitions in the adiabatic limit. This indicates that care is needed when determining requirements on trap Rabi frequency and magnetic field gradient in practical atom traps.
We observe a density-dependent collective suppression of optical pumping between the hyperfine ground states in an array of submicrometer-sized clouds of cold rubidium atoms. The suppressed Raman transition rate can be explained by strong resonant di pole-dipole interactions that are enhanced by increasing atom density. The observations are consistent with stochastic electrodynamics simulations that incorporate the effects of the nonlinear population transfer via internal atomic levels embedded in a coupled-dipole model.
We have realized a two dimensional permanent magnetic lattice of Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a single 300 nm magnetized layer of FePt, patterned using optical lithography. Our magnetic lattice consists of more than 15000 tightly confining microtraps with a density of 1250 traps/mm$^2$. Simple analytical approximations for the magnetic fields produced by the lattice are used to derive relevant trap parameters. We load ultracold atoms into at least 30 lattice sites at a distance of approximately 10 $mu$m from the film surface. The present result is an important first step towards quantum information processing with neutral atoms in magnetic lattice potentials.
We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chi ps enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 $mu$m, suitable for experiments in quantum information science employing the interaction between atoms in highly-excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cut out of a silver foil, was mounted under the atom chip in order to load ultracold $^{87}$Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا