ﻻ يوجد ملخص باللغة العربية
For an $n times n$ matrix $M$ with entries in $mathbb{Z}_2$ denote by $R(M)$ the minimal rank of all the matrices obtained by changing some numbers on the main diagonal of $M$. We prove that for each non-negative integer $k$ there is a polynomial in $n$ algorithm deciding whether $R(M) leq k$ (whose complexity may depend on $k$). We also give a polynomial in $n$ algorithm computing a number $m$ such that $m/2 leq R(M) leq m$. These results have applications to graph drawings on non-orientable surfaces.
Given three nonnegative integers $p,q,r$ and a finite field $F$, how many Hankel matrices $left( x_{i+j}right) _{0leq ileq p, 0leq jleq q}$ over $F$ have rank $leq r$ ? This question is classical, and the answer ($q^{2r}$ when $rleqminleft{ p,qright}
Varchenko defined the Varchenko matrix associated to any real hyperplane arrangement and computed its determinant. In this paper, we show that the Varchenko matrix of a hyperplane arrangement has a diagonal form if and only if it is semigeneral, i.e.
We study point process convergence for sequences of iid random walks. The objective is to derive asymptotic theory for the extremes of these random walks. We show convergence of the maximum random walk to the Gumbel distribution under the existence o
How many random entries of an n by m, rank r matrix are necessary to reconstruct the matrix within an accuracy d? We address this question in the case of a random matrix with bounded rank, whereby the observed entries are chosen uniformly at random.
We determine the rank of a random matrix over an arbitrary field with prescribed numbers of non-zero entries in each row and column. As an application we obtain a formula for the rate of low-density parity check codes. This formula vindicates a conje