ﻻ يوجد ملخص باللغة العربية
The synthetic dimension, a research topic of both fundamental significance and practical applications, is attracting increasing attention in recent years. In this paper, we propose a theoretical framework to construct arbitrary synthetic dimensions, or N-boson synthetic lattices, using multiple bosons on one-dimensional lattices. We show that a one-dimensional lattice hosting N indistinguishable bosons can be mapped to a single boson on a N-dimensional lattice with high symmetry. Band structure analyses on this N-dimensional lattice can then be mathematically performed to predict the existence of exotic eigenstates and the motion of N-boson wavepackets. As illustrative examples, we demonstrate the edge states in two-boson Su-Schrieffer-Heeger synthetic lattices without interactions, interface states in two-boson Su-Schrieffer-Heeger synthetic lattices with interactions, and weakly-bound triplon states in three-boson tight-binding synthetic lattices with interactions. The interface states and weakly-bound triplon states have not been thoroughly understood in previous literatures. Our proposed theoretical framework hence provides a novel perspective to explore the multi-boson dynamics on lattices with boson-boson interactions, and opens up a future avenue in the fields of multi-boson manipulation in quantum engineering.
We use laser light shaped by a digital micro-mirror device to realize arbitrary optical dipole potentials for one-dimensional (1D) degenerate Bose gases of 87Rb trapped on an atom chip. Superposing optical and magnetic potentials combines the high fl
We propose how to realize nonreciprocity for a weak input optical field via nonlinearity and synthetic magnetism. We show that the photons transmitting from a linear cavity to a nonlinear cavity (i.e., an asymmetric nonlinear optical molecule) exhibi
The quantum walk has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on mult
Synthetic photonic lattice with temporally controlled potentials is a versatile platform for realizing wave dynamics associated with physical areas of optics and quantum physics. Here, discrete optics in one-dimensionally synthetic photonic lattice i
We analyze the fundamental quantum limit of the resolution of an optical imaging system from the perspective of the detection problem of deciding whether the optical field in the image plane is generated by one incoherent on-axis source with brightne