ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonreciprocity via nonlinearity and synthetic magnetism

114   0   0.0 ( 0 )
 نشر من قبل Xun-Wei Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose how to realize nonreciprocity for a weak input optical field via nonlinearity and synthetic magnetism. We show that the photons transmitting from a linear cavity to a nonlinear cavity (i.e., an asymmetric nonlinear optical molecule) exhibit nonreciprocal photon blockade but no clear nonreciprocal transmission. Both nonreciprocal transmission and nonreciprocal photon blockade can be observed, when one or two auxiliary modes are coupled to the asymmetric nonlinear optical molecule to generate an artificial magnetic field. Similar method can be used to create and manipulate nonreciprocal transmission and nonreciprocal photon blockade for photons bi-directionally transport in a symmetric nonlinear optical molecule. Additionally, a photon circulator with nonreciprocal photon blockade is designed based on nonlinearity and synthetic magnetism. The combination of nonlinearity and synthetic magnetism provides us an effective way towards the realization of quantum nonreciprocal devices, e.g., nonreciprocal single-photon sources and single-photon diodes.



قيم البحث

اقرأ أيضاً

Nonreciprocal devices are a key element for signal routing and noise isolation. Rapid development of quantum technologies has boosted the demand for a new generation of miniaturized and low-loss nonreciprocal components. Here we use a pair of tunable superconducting artificial atoms in a 1D waveguide to experimentally realize a minimal passive nonreciprocal device. Taking advantage of the quantum nonlinear behavior of artificial atoms, we achieve nonreciprocal transmission through the waveguide in a wide range of powers. Our results are consistent with theoretical modeling showing that nonreciprocity is associated with the population of the two-qubit nonlocal entangled quasi-dark state, which responds asymmetrically to incident fields from opposing directions. Our experiment highlights the role of quantum correlations in enabling nonreciprocal behavior and opens a path to building passive quantum nonreciprocal devices without magnetic fields.
Synthetic magnetism has been used to control charge neutral excitations for applications ranging from classical beam steering to quantum simulation. In optomechanics, radiation-pressure-induced parametric coupling between optical (photon) and mechani cal (phonon) excitations may be used to break time-reversal symmetry, providing the prerequisite for synthetic magnetism. Here we design and fabricate a silicon optomechanical circuit with both optical and mechanical connectivity between two optomechanical cavities. Driving the two cavities with phase-correlated laser light results in a synthetic magnetic flux, which in combination with dissipative coupling to the mechanical bath, leads to nonreciprocal transport of photons with 35dB of isolation. Additionally, optical pumping with blue-detuned light manifests as a particle non-conserving interaction between photons and phonons, resulting in directional optical amplification of 12dB in the isolator through direction. These results indicate the feasibility of utilizing optomechanical circuits to create a more general class of nonreciprocal optical devices, and further, to enable novel topological phases for both light and sound on a microchip.
We propose to create optical nonreciprocity in a three-mode optomechanical system comprising one mechanical and two optical modes, where the mechanical mode is coupled with only one of the optical modes. The optical nonreciprocal response of the syst em is based on the nonlinearity induced by the optomechanical interaction. However, nonlinearity is a necessary but not a sufficient condition for observing nonreciprocity. Another necessary condition for nonreciprocal response of the system to a classical driving field is demonstrated analytically. The effects of the parameters on the nonreciprocal response of the system are discussed numerically. The three-mode optomechanical system provides a platform to realize nonreciprocity for strong optical signal fields.
The synthetic dimension, a research topic of both fundamental significance and practical applications, is attracting increasing attention in recent years. In this paper, we propose a theoretical framework to construct arbitrary synthetic dimensions, or N-boson synthetic lattices, using multiple bosons on one-dimensional lattices. We show that a one-dimensional lattice hosting N indistinguishable bosons can be mapped to a single boson on a N-dimensional lattice with high symmetry. Band structure analyses on this N-dimensional lattice can then be mathematically performed to predict the existence of exotic eigenstates and the motion of N-boson wavepackets. As illustrative examples, we demonstrate the edge states in two-boson Su-Schrieffer-Heeger synthetic lattices without interactions, interface states in two-boson Su-Schrieffer-Heeger synthetic lattices with interactions, and weakly-bound triplon states in three-boson tight-binding synthetic lattices with interactions. The interface states and weakly-bound triplon states have not been thoroughly understood in previous literatures. Our proposed theoretical framework hence provides a novel perspective to explore the multi-boson dynamics on lattices with boson-boson interactions, and opens up a future avenue in the fields of multi-boson manipulation in quantum engineering.
This tutorial provides an intuitive and concrete description of the phenomena of electromagnetic nonreciprocity that will be useful for readers with engineering or physics backgrounds. The notion of time reversal and its different definitions are dis cussed with special emphasis to its relationship with the reciprocity concept. Starting from the Onsager reciprocal relations generally applicable to many physical processes, we present the derivation of the Lorentz theorem and discuss other implications of reciprocity for electromagnetic systems. Next, we identify all possible routes towards engineering nonreciprocal devices and analyze in detail three of them: Based on external bias, based on nonlinear and time-variant systems. The principles of the operation of different nonreciprocal devices are explained. We address the similarity and fundamental difference between nonreciprocal effects and asymmetric transmission in reciprocal systems. In addition to the tutorial description of the topic, the manuscript also contains original findings. In particular, general classification of reciprocal and nonreciprocal phenomena in linear bianisotropic media based on the space- and time-reversal symmetries is presented. This classification serves as a powerful tool for drawing analogies between seemingly distinct effects having the same physical origin and can be used for predicting novel electromagnetic phenomena. Furthermore, electromagnetic reciprocity theorem for time-varying systems is derived and its applicability is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا