ترغب بنشر مسار تعليمي؟ اضغط هنا

pLUTo: In-DRAM Lookup Tables to Enable Massively Parallel General-Purpose Computation

79   0   0.0 ( 0 )
 نشر من قبل Jo\\~ao Dinis Ferreira
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data movement between main memory and the processor is a significant contributor to the execution time and energy consumption of memory-intensive applications. This data movement bottleneck can be alleviated using Processing-in-Memory (PiM), which enables computation inside the memory chip. However, existing PiM architectures often lack support for complex operations, since supporting these operations increases design complexity, chip area, and power consumption. We introduce pLUTo (processing-in-memory with lookup table [LUT] operations), a new DRAM substrate that leverages the high area density of DRAM to enable the massively parallel storing and querying of lookup tables (LUTs). The use of LUTs enables the efficient execution of complex operations in-memory, which has been a long-standing challenge in the domain of PiM. When running a state-of-the-art binary neural network in a single DRAM subarray, pLUTo outperforms the baseline CPU and GPU implementations by $33times$ and $8times$, respectively, while simultaneously achieving energy savings of $110times$ and $80times$.



قيم البحث

اقرأ أيضاً

Processing-using-DRAM has been proposed for a limited set of basic operations (i.e., logic operations, addition). However, in order to enable full adoption of processing-using-DRAM, it is necessary to provide support for more complex operations. In t his paper, we propose SIMDRAM, a flexible general-purpose processing-using-DRAM framework that (1) enables the efficient implementation of complex operations, and (2) provides a flexible mechanism to support the implementation of arbitrary user-defined operations. The SIMDRAM framework comprises three key steps. The first step builds an efficient MAJ/NOT representation of a given desired operation. The second step allocates DRAM rows that are reserved for computation to the operations input and output operands, and generates the required sequence of DRAM commands to perform the MAJ/NOT implementation of the desired operation in DRAM. The third step uses the SIMDRAM control unit located inside the memory controller to manage the computation of the operation from start to end, by executing the DRAM commands generated in the second step of the framework. We design the hardware and ISA support for SIMDRAM framework to (1) address key system integration challenges, and (2) allow programmers to employ new SIMDRAM operations without hardware changes. We evaluate SIMDRAM for reliability, area overhead, throughput, and energy efficiency using a wide range of operations and seven real-world applications to demonstrate SIMDRAMs generality. Using 16 DRAM banks, SIMDRAM provides (1) 88x and 5.8x the throughput, and 257x and 31x the energy efficiency, of a CPU and a high-end GPU, respectively, over 16 operations; (2) 21x and 2.1x the performance of the CPU and GPU, over seven real-world applications. SIMDRAM incurs an area overhead of only 0.2% in a high-end CPU.
Processing-using-DRAM has been proposed for a limited set of basic operations (i.e., logic operations, addition). However, in order to enable the full adoption of processing-using-DRAM, it is necessary to provide support for more complex operations. In this paper, we propose SIMDRAM, a flexible general-purpose processing-using-DRAM framework that enables massively-parallel computation of a wide range of operations by using each DRAM column as an independent SIMD lane to perform bit-serial operations. SIMDRAM consists of three key steps to enable a desired operation in DRAM: (1) building an efficient majority-based representation of the desired operation, (2) mapping the operation input and output operands to DRAM rows and to the required DRAM commands that produce the desired operation, and (3) executing the operation. These three steps ensure efficient computation of any arbitrary and complex operation in DRAM. The first two steps give users the flexibility to efficiently implement and compute any desired operation in DRAM. The third step controls the execution flow of the in-DRAM computation, transparently from the user. We comprehensively evaluate SIMDRAMs reliability, area overhead, operation throughput, and energy efficiency using a wide range of operations and seven diverse real-world kernels to demonstrate its generality. Our results show that SIMDRAM provides up to 5.1x higher operation throughput and 2.5x higher energy efficiency than a state-of-the-art in-DRAM computing mechanism, and up to 2.5x speedup for real-world kernels while incurring less than 1% DRAM chip area overhead. Compared to a CPU and a high-end GPU, SIMDRAM is 257x and 31x more energy-efficient, while providing 93x and 6x higher operation throughput, respectively.
Data structures that allow efficient distance estimation (distance oracles, distance sketches, etc.) have been extensively studied, and are particularly well studied in centralized models and classical distributed models such as CONGEST. We initiate their study in newer (and arguably more realistic) models of distributed computation: the Congested Clique model and the Massively Parallel Computation (MPC) model. We provide efficient constructions in both of these models, but our core results are for MPC. In MPC we give two main results: an algorithm that constructs stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic rounds. Along the way, we show that other useful combinatorial structures can also be computed in MPC. In particular, one key component we use to construct distance sketches are an MPC construction of the hopsets of Elkin and Neiman (2016). This result has additional applications such as the first polylogarithmic time algorithm for constant approximate single-source shortest paths for weighted graphs in the low memory MPC setting.
We introduce the Adaptive Massively Parallel Computation (AMPC) model, which is an extension of the Massively Parallel Computation (MPC) model. At a high level, the AMPC model strengthens the MPC model by storing all messages sent within a round in a distributed data store. In the following round, all machines are provided with random read access to the data store, subject to the same constraints on the total amount of communication as in the MPC model. Our model is inspired by the previous empirical studies of distributed graph algorithms using MapReduce and a distributed hash table service. This extension allows us to give new graph algorithms with much lower round complexities compared to the best known solutions in the MPC model. In particular, in the AMPC model we show how to solve maximal independent set in $O(1)$ rounds and connectivity/minimum spanning tree in $O(loglog_{m/n} n)$ rounds both using $O(n^delta)$ space per machine for constant $delta < 1$. In the same memory regime for MPC, the best known algorithms for these problems require polylog $n$ rounds. Our results imply that the 2-Cycle conjecture, which is widely believed to hold in the MPC model, does not hold in the AMPC model.
The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, however, we still have a far more limited understanding of maximal matching which is one of the ce ntral problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of $n^{1+Omega(1)}$ per machine. In this work, we close this gap by providing a novel analysis of an extremely simple algorithm a variant of which was conjectured to work by Czumaj et al. [STOC18]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among some other results, leads to an $O(log log Delta)$ round algorithm for maximal matching with $O(n)$ space (or even mildly sublinear in $n$ using standard techniques). As an immediate corollary, we get a $2$ approximate minimum vertex cover in essentially the same rounds and space. This is the best possible approximation factor under standard assumptions, culminating a long line of research. It also leads to an improved $O(loglog Delta)$ round algorithm for $1 + varepsilon$ approximate matching. All these results can also be implemented in the congested clique model within the same number of rounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا