ﻻ يوجد ملخص باللغة العربية
Processing-using-DRAM has been proposed for a limited set of basic operations (i.e., logic operations, addition). However, in order to enable full adoption of processing-using-DRAM, it is necessary to provide support for more complex operations. In this paper, we propose SIMDRAM, a flexible general-purpose processing-using-DRAM framework that (1) enables the efficient implementation of complex operations, and (2) provides a flexible mechanism to support the implementation of arbitrary user-defined operations. The SIMDRAM framework comprises three key steps. The first step builds an efficient MAJ/NOT representation of a given desired operation. The second step allocates DRAM rows that are reserved for computation to the operations input and output operands, and generates the required sequence of DRAM commands to perform the MAJ/NOT implementation of the desired operation in DRAM. The third step uses the SIMDRAM control unit located inside the memory controller to manage the computation of the operation from start to end, by executing the DRAM commands generated in the second step of the framework. We design the hardware and ISA support for SIMDRAM framework to (1) address key system integration challenges, and (2) allow programmers to employ new SIMDRAM operations without hardware changes. We evaluate SIMDRAM for reliability, area overhead, throughput, and energy efficiency using a wide range of operations and seven real-world applications to demonstrate SIMDRAMs generality. Using 16 DRAM banks, SIMDRAM provides (1) 88x and 5.8x the throughput, and 257x and 31x the energy efficiency, of a CPU and a high-end GPU, respectively, over 16 operations; (2) 21x and 2.1x the performance of the CPU and GPU, over seven real-world applications. SIMDRAM incurs an area overhead of only 0.2% in a high-end CPU.
Processing-using-DRAM has been proposed for a limited set of basic operations (i.e., logic operations, addition). However, in order to enable the full adoption of processing-using-DRAM, it is necessary to provide support for more complex operations.
In-Memory Acceleration (IMA) promises major efficiency improvements in deep neural network (DNN) inference, but challenges remain in the integration of IMA within a digital system. We propose a heterogeneous architecture coupling 8 RISC-V cores with
As DRAM technology continues to evolve towards smaller feature sizes and increased densities, faults in DRAM subsystem are becoming more severe. Current servers mostly use CHIPKILL based schemes to tolerate up-to one/two symbol errors per DRAM beat.
Many real-world problems require to optimise trajectories under constraints. Classical approaches are based on optimal control methods but require an exact knowledge of the underlying dynamics, which could be challenging or even out of reach. In this
The current dominant paradigm for robotic manipulation involves two separate stages: manipulator design and control. Because the robots morphology and how it can be controlled are intimately linked, joint optimization of design and control can signif