ﻻ يوجد ملخص باللغة العربية
An extension of QPTL is considered where functional dependencies among the quantified variables can be restricted in such a way that their current values are independent of the future values of the other variables. This restriction is tightly connected to the notion of behavioral strategies in game-theory and allows the resulting logic to naturally express game-theoretic concepts. The fragment where only restricted quantifications are considered, called behavioral quantifications, can be decided, for both model checking and satisfiability, in 2ExpTime and is expressively equivalent to QPTL, though significantly less succinct.
We introduce a new game-theoretic semantics (GTS) for the modal mu-calculus. Our so-called bounded GTS replaces parity games with alternative evaluation games where only finite paths arise; infinite paths are not needed even when the considered trans
Game semantics has provided adequate models for a variety of programming languages, in which types are interpreted as two-player games and programs as strategies. Melli`es (2018) suggested that such categories of games and strategies may be obtained
Game semantics is a denotational semantics presenting compositionally the computational behaviour of various kinds of effectful programs. One of its celebrated achievement is to have obtained full abstraction results for programming languages with a
In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form $bigwedge_{i=1}^n mathbf{G}mathbf{F} varphi_i vee mathb
We define sound and adequate denotational and operational semantics for the stochastic lambda calculus. These two semantic approaches build on previous work that used similar techniques to reason about higher-order probabilistic programs, but for the