ترغب بنشر مسار تعليمي؟ اضغط هنا

Bounded Game-Theoretic Semantics for Modal Mu-Calculus and Some Variants

152   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new game-theoretic semantics (GTS) for the modal mu-calculus. Our so-called bounded GTS replaces parity games with alternative evaluation games where only finite paths arise; infinite paths are not needed even when the considered transition system is infinite. The novel games offer alternative approaches to various constructions in the framework of the mu-calculus. For example, they have already been successfully used as a basis for an approach leading to a natural formula size game for the logic. While our main focus is introducing the new GTS, we also consider some applications to demonstrate its uses. For example, we consider a natural model transformation procedure that reduces model checking games to checking a single, fixed formula in the constructed models, and we also use the GTS to identify new alternative variants of the mu-calculus with PTime model checking.



قيم البحث

اقرأ أيضاً

89 - Dylan Bellier 2021
An extension of QPTL is considered where functional dependencies among the quantified variables can be restricted in such a way that their current values are independent of the future values of the other variables. This restriction is tightly connect ed to the notion of behavioral strategies in game-theory and allows the resulting logic to naturally express game-theoretic concepts. The fragment where only restricted quantifications are considered, called behavioral quantifications, can be decided, for both model checking and satisfiability, in 2ExpTime and is expressively equivalent to QPTL, though significantly less succinct.
The higher-dimensional modal mu-calculus is an extension of the mu-calculus in which formulas are interpreted in tuples of states of a labeled transition system. Every property that can be expressed in this logic can be checked in polynomial time, an d conversely every polynomial-time decidable problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined in the higher-dimensional modal mu-calculus. We exemplify the latter connection by giving several examples of decision problems which reduce to model checking of the higher-dimensional modal mu-calculus for some fixed formulas. This way generic model checking algorithms for the logic can then be used via partial evaluation in order to obtain algorithms for theses problems which may benefit from improvements that are well-established in the field of program verification, namely on-the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and games.
216 - Steffen van Bakel 2014
We study the lambda-mu-calculus, extended with explicit substitution, and define a compositional output-based interpretation into a variant of the pi-calculus with pairing that preserves single-step explicit head reduction with respect to weak bisimi larity. We define four notions of weak equivalence for lambda-mu -- one based on weak reduction, two modelling weak head-reduction and weak explicit head reduction (all considering terms without weak head-normal form equivalent as well), and one based on weak approximation -- and show they all coincide. We will then show full abstraction results for our interpretation for the weak equivalences with respect to weak bisimilarity on processes.
194 - Naoki Kobayashi 2011
Ong has shown that the modal mu-calculus model checking problem (equivalently, the alternating parity tree automaton (APT) acceptance problem) of possibly-infinite ranked trees generated by order-n recursion schemes is n-EXPTIME complete. We consider two subclasses of APT and investigate the complexity of the respective acceptance problems. The main results are that, for APT with a single priority, the problem is still n-EXPTIME complete; whereas, for APT with a disjunctive transition function, the problem is (n-1)-EXPTIME complete. This study was motivated by Kobayashis recent work showing that the resource usage verification of functional programs can be reduced to the model checking of recursion schemes. As an application, we show that the resource usage verification problem is (n-1)-EXPTIME complete.
We define sound and adequate denotational and operational semantics for the stochastic lambda calculus. These two semantic approaches build on previous work that used similar techniques to reason about higher-order probabilistic programs, but for the first time admit an adequacy theorem relating the operational and denotational views. This resolves the main issue left open in (Bacci et al. 2018).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا