ترغب بنشر مسار تعليمي؟ اضغط هنا

Interferometric-Spectroscopy With Quantum-Light; Revealing Out-of-Time-Ordering Correlators

109   0   0.0 ( 0 )
 نشر من قبل Shahaf Asban
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We survey the inclusion of interferometric elements in nonlinear spectroscopy performed with quantum light. Controlled interference of electromagnetic fields coupled to matter can induce constructive or destructive contributions of microscopic coupling sequences (histories) of matter. Since quantum fields do not commute, quantum light signals are sensitive to the order of light-matter coupling sequence. Matter correlation functions are thus imprinted by different field factors, which depend on that order. We identify the associated quantum information obtained by controlling the weights of different contributing pathways, and offer several experimental schemes for recovering it. Nonlinear quantum response functions include out-of-time-ordering matter correlators (OTOC) which reveal how perturbations spread throughout a quantum system (information scrambling). Their effect becomes most notable when using ultrafast pulse sequences with respect to the path difference induced by the interferometer. OTOC appear in quantum-informatics studies in other fields, including black holes, high energy, and condensed matter physics.


قيم البحث

اقرأ أيضاً

Interacting many-body quantum systems show a rich array of physical phenomena and dynamical properties, but are notoriously difficult to study: they are challenging analytically and exponentially difficult to simulate on classical computers. Small-sc ale quantum information processors hold the promise to efficiently emulate these systems, but characterizing their dynamics is experimentally challenging, requiring probes beyond simple correlation functions and multi-body tomographic methods. Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs), one of the most effective tools for studying quantum system evolution and processes like quantum thermalization. We implement a 3x3 two-dimensional hard-core Bose-Hubbard lattice with a superconducting circuit, study its time-reversibility by performing a Loschmidt echo, and measure OTOCs that enable us to observe the propagation of quantum information. A central requirement for our experiments is the ability to coherently reverse time evolution, which we achieve with a digital-analog simulation scheme. In the presence of frequency disorder, we observe that localization can partially be overcome with more particles present, a possible signature of many-body localization in two dimensions.
The out-of-time-ordered correlator (OTOC) is central to the understanding of information scrambling in quantum many-body systems. In this work, we show that the OTOC in a quantum many-body system close to its critical point obeys dynamical scaling la ws which are specified by a few universal critical exponents of the quantum critical point. Such scaling laws of the OTOC imply a universal form for the butterfly velocity of a chaotic system in the quantum critical region and allow one to locate the quantum critical point and extract all universal critical exponents of the quantum phase transitions. We numerically confirm the universality of the butterfly velocity in a chaotic model, namely the transverse axial next-nearest-neighbor Ising model, and show the feasibility of extracting the critical properties of quantum phase transitions from OTOC using the Lipkin-Meshkov-Glick (LMG) model.
For systems of controllable qubits, we provide a method for experimentally obtaining a useful class of multitime correlators using sequential generalized measurements of arbitrary strength. Specifically, if a correlator can be expressed as an average of nested (anti)commutators of operators that square to the identity, then that correlator can be determined exactly from the average of a measurement sequence. As a relevant example, we provide quantum circuits for measuring multiqubit out-of-time-order correlators using optimized control-Z or ZX-90 two-qubit gates common in superconducting transmon implementations.
The out-of-time-order correlator (OTOC) is considered as a measure of quantum chaos. We formulate how to calculate the OTOC for quantum mechanics with a general Hamiltonian. We demonstrate explicit calculations of OTOCs for a harmonic oscillator, a p article in a one-dimensional box, a circle billiard and stadium billiards. For the first two cases, OTOCs are periodic in time because of their commensurable energy spectra. For the circle and stadium billiards, they are not recursive but saturate to constant values which are linear in temperature. Although the stadium billiard is a typical example of the classical chaos, an expected exponential growth of the OTOC is not found. We also discuss the classical limit of the OTOC. Analysis of a time evolution of a wavepacket in a box shows that the OTOC can deviate from its classical value at a time much earlier than the Ehrenfest time.
Out-of-time-ordered correlators (OTOCs) have been proposed as a tool to witness quantum information scrambling in many-body system dynamics. These correlators can be understood as averages over nonclassical multi-time quasi-probability distributions (QPDs). These QPDs have more information, and their nonclassical features witness quantum information scrambling in a more nuanced way. However, their high dimensionality and nonclassicality make QPDs challenging to measure experimentally. We focus on the topical case of a many-qubit system and show how to obtain such a QPD in the laboratory using circuits with three and four sequential measurements. Averaging distinct values over the same measured distribution reveals either the OTOC or parameters of its QPD. Stronger measurements minimize experimental resources despite increased dynamical disturbance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا