ﻻ يوجد ملخص باللغة العربية
The out-of-time-order correlator (OTOC) is considered as a measure of quantum chaos. We formulate how to calculate the OTOC for quantum mechanics with a general Hamiltonian. We demonstrate explicit calculations of OTOCs for a harmonic oscillator, a particle in a one-dimensional box, a circle billiard and stadium billiards. For the first two cases, OTOCs are periodic in time because of their commensurable energy spectra. For the circle and stadium billiards, they are not recursive but saturate to constant values which are linear in temperature. Although the stadium billiard is a typical example of the classical chaos, an expected exponential growth of the OTOC is not found. We also discuss the classical limit of the OTOC. Analysis of a time evolution of a wavepacket in a box shows that the OTOC can deviate from its classical value at a time much earlier than the Ehrenfest time.
We present a method to probe the Out-of-Time-Order Correlators (OTOCs) of a general system by coupling it to a harmonic oscillator probe. When the systems degrees of freedom are traced out, the OTOCs imprint themselves on the generalized influence fu
Exponential growth of thermal out-of-time-order correlator (OTOC) is an indicator of a possible gravity dual, and a simple toy quantum model showing the growth is being looked for. We consider a system of two harmonic oscillators coupled nonlinearly
The out-of-time-order correlator (OTOC), recently analyzed in several physical contexts, is studied for low-dimensional chaotic systems through semiclassical expansions and numerical simulations. The semiclassical expansion for the OTOC yields a lead
We study out-of-time order correlators (OTOCs) of the form $langlehat A(t)hat B(0)hat C(t)hat D(0)rangle$ for a quantum system weakly coupled to a dissipative environment. Such an open system may serve as a model of, e.g., a small region in a disorde
Out-of-time-ordered correlators (OTOCs) have been suggested as a means to study quantum chaotic behavior in various systems. In this work, I calculate OTOCs for the quantum mechanical anharmonic oscillator with quartic potential, which is classically