ترغب بنشر مسار تعليمي؟ اضغط هنا

Remarks on etale motivic stable homotopy theory

120   0   0.0 ( 0 )
 نشر من قبل Tom Bachmann
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We strengthen some results in etale (and real etale) motivic stable homotopy theory, by eliminating finiteness hypotheses, additional localizations and/or extending to spectra from HZ-modules.



قيم البحث

اقرأ أيضاً

In this paper we prove a Thomason-style descent theorem for the $rho$-complete sphere spectrum. In particular, we deduce a very general etale descent result for torsion, $rho$-complete motivic spectra. To this end, we prove a new convergence result f or slice spectral sequence in the $rho$-complete motivic category, following Levines work. This generalizes and extends previous etale descent results for motivic cohomology theories which, combined with etale rigidity results, gives a complete, structural description of the etale motivic stable category.
Over any field of characteristic not 2, we establish a 2-term resolution of the $eta$-periodic, 2-local motivic sphere spectrum by shifts of the connective 2-local Witt K-theory spectrum. This is curiously similar to the resolution of the K(1)-local sphere in classical stable homotopy theory. As applications we determine the $eta$-periodized motivic stable stems and the $eta$-periodized algebraic symplectic and SL-cobordism groups. Along the way we construct Adams operations on the motivic spectrum representing Hermitian K-theory and establish new completeness results for certain motivic spectra over fields of finite virtual 2-cohomological dimension. In an appendix, we supply a new proof of the homotopy fixed point theorem for the Hermitian K-theory of fields.
87 - Tom Bachmann 2020
We construct well-behaved extensions of the motivic spectra representing generalized motivic cohomology and connective Balmer--Witt K-theory (among others) to mixed characteristic Dedekind schemes on which 2 is invertible. As a consequence we lift th e fundamental fiber sequence of $eta$-periodic motivic stable homotopy theory established in [arxiv:2005.06778] from fields to arbitrary base schemes, and use this to determine (among other things) the $eta$-periodized algebraic symplectic and SL-cobordism groups of mixed characteristic Dedekind schemes containing 1/2.
If $f:S to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal norm functor $f_otimes: mathcal H_*(S) tomathcal H_*(S)$, where $mathcal H_*(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finit e etale, we show that it stabilizes to a functor $f_otimes: mathcal{SH}(S) to mathcal{SH}(S)$, where $mathcal{SH}(S)$ is the $mathbb P^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a normed motivic spectrum, which is an enhancement of a motivic $E_infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendiecks Galois theory, with Betti realization, and with Voevodskys slice filtration; we prove that the norm functors categorify Rosts multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $Hmathbb Z$, the homotopy K-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $Hmathbb Z$ is a common refinement of Fulton and MacPhersons mutliplicative transfers on Chow groups and of Voevodskys power operations in motivic cohomology.
140 - Tom Bachmann 2020
We establish a kind of degree zero Freudenthal Gm-suspension theorem in motivic homotopy theory. From this we deduce results about the conservativity of the P^1-stabilization functor. In order to establish these results, we show how to compute cert ain pullbacks in the cohomology of a strictly homotopy invariant sheaf in terms of the Rost--Schmid complex. This establishes the main conjecture of [BY18], which easily implies the aforementioned results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا