ترغب بنشر مسار تعليمي؟ اضغط هنا

The zeroth P^1-stable homotopy sheaf of a motivic space

141   0   0.0 ( 0 )
 نشر من قبل Tom Bachmann
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Tom Bachmann




اسأل ChatGPT حول البحث

We establish a kind of degree zero Freudenthal Gm-suspension theorem in motivic homotopy theory. From this we deduce results about the conservativity of the P^1-stabilization functor. In order to establish these results, we show how to compute certain pullbacks in the cohomology of a strictly homotopy invariant sheaf in terms of the Rost--Schmid complex. This establishes the main conjecture of [BY18], which easily implies the aforementioned results.



قيم البحث

اقرأ أيضاً

Over any field of characteristic not 2, we establish a 2-term resolution of the $eta$-periodic, 2-local motivic sphere spectrum by shifts of the connective 2-local Witt K-theory spectrum. This is curiously similar to the resolution of the K(1)-local sphere in classical stable homotopy theory. As applications we determine the $eta$-periodized motivic stable stems and the $eta$-periodized algebraic symplectic and SL-cobordism groups. Along the way we construct Adams operations on the motivic spectrum representing Hermitian K-theory and establish new completeness results for certain motivic spectra over fields of finite virtual 2-cohomological dimension. In an appendix, we supply a new proof of the homotopy fixed point theorem for the Hermitian K-theory of fields.
87 - Tom Bachmann 2020
We construct well-behaved extensions of the motivic spectra representing generalized motivic cohomology and connective Balmer--Witt K-theory (among others) to mixed characteristic Dedekind schemes on which 2 is invertible. As a consequence we lift th e fundamental fiber sequence of $eta$-periodic motivic stable homotopy theory established in [arxiv:2005.06778] from fields to arbitrary base schemes, and use this to determine (among other things) the $eta$-periodized algebraic symplectic and SL-cobordism groups of mixed characteristic Dedekind schemes containing 1/2.
In fall of 2019, the Thursday Seminar at Harvard University studied motivic infinite loop space theory. As part of this, the authors gave a series of talks outlining the main theorems of the theory, together with their proofs, in the case of infinite perfect fields. These are our extended notes on these talks.
119 - Tom Bachmann , Marc Hoyois 2021
We strengthen some results in etale (and real etale) motivic stable homotopy theory, by eliminating finiteness hypotheses, additional localizations and/or extending to spectra from HZ-modules.
We show that an old conjecture of A.A. Suslin characterizing the image of a Hurewicz map from Quillen K-theory in degree $n$ to Milnor K-theory in degree $n$ admits an interpretation in terms of unstable ${mathbb A}^1$-homotopy sheaves of the general linear group. Using this identification, we establish Suslins conjecture in degree $5$ for infinite fields having characteristic unequal to $2$ or $3$. We do this by linking the relevant unstable ${mathbb A}^1$-homotopy sheaf of the general linear group to the stable ${mathbb A}^1$-homotopy of motivic spheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا