ﻻ يوجد ملخص باللغة العربية
We consider the Johnson noise of a two-dimensional, two-terminal electrical conductor for which the electron system obeys the Wiedemann-Franz law. We derive two simple and generic relations between the Johnson Noise temperature and the heat flux into the electron system. First, we consider the case where the electron system is heated by Joule heating from a DC current, and we show that there is a universal proportionality coefficient between the Joule power and the increase in Johnson noise temperature. Second, we consider the case where heat flows into the sample from an external source, and we derive a simple relation between the Johnson noise temperature and the heat flux across the boundary of the sample.
Quantum corrections to charge transport can give rise to an oscillatory magnetoconductance, typically observed in mesoscopic samples with a length shorter than or comparable with the phase coherence length. Here, we report the observation of magnetoc
We grow a tiled structure of insulating two dimensional LaAlO3/SrTiO3 interfaces composed of alternating one and three LaAlO3 unit cells. The boundary between two tiles is conducting. At low temperatures this conductance exhibits quantized steps as a
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to ex
The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various
In low-dimensional systems, the combination of reduced dimensionality, strong interactions, and topology has led to a growing number of many-body quantum phenomena. Thermal transport, which is sensitive to all energy-carrying degrees of freedom, prov