ﻻ يوجد ملخص باللغة العربية
In low-dimensional systems, the combination of reduced dimensionality, strong interactions, and topology has led to a growing number of many-body quantum phenomena. Thermal transport, which is sensitive to all energy-carrying degrees of freedom, provides a discriminating probe of emergent excitations in quantum materials. However, thermal transport measurements in low dimensions are dominated by the phonon contribution of the lattice. An experimental approach to isolate the electronic thermal conductance is needed. Here, we show how the measurement of nonlocal voltage fluctuations in a multiterminal device can reveal the electronic heat transported across a mesoscopic bridge made of low-dimensional materials. By using graphene as a noise thermometer, we demonstrate quantitative electronic thermal conductance measurements of graphene and carbon nanotubes up to 70K, achieving a precision of ~1% of the thermal conductance quantum at 5K. Employing linear and nonlinear thermal transport, we observe signatures of long-range interaction-mediated energy transport in 1D, in agreement with a theoretical model. Our versatile nonlocal noise thermometry allows new experiments probing energy transport in emergent states of matter in low dimensions.
The ability to transport energy is a fundamental property of the two-dimensional Dirac fermions in graphene. Electronic thermal transport in this system is relatively unexplored and is expected to show unique fundamental properties and to play an imp
The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS$_2$ with
We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system -- emph{biased bilayer}. The effect of the perpendicular electric fiel
In nearly compensated graphene, disorder-assisted electron-phonon scattering or supercollisions are responsible for both quasiparticle recombination and energy relaxation. Within the hydrodynamic approach, these processes contribute weak decay terms
Coupling high quality, suspended atomic membranes to specialized electrodes enables investigation of many novel phenomena, such as spin or Cooper pair transport in these two dimensional systems. However, many electrode materials are not stable in aci