ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Electronic Thermal Conductance in Low-Dimensional Materials with Graphene Nonlocal Noise Thermometry

304   0   0.0 ( 0 )
 نشر من قبل Jonah Waissman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In low-dimensional systems, the combination of reduced dimensionality, strong interactions, and topology has led to a growing number of many-body quantum phenomena. Thermal transport, which is sensitive to all energy-carrying degrees of freedom, provides a discriminating probe of emergent excitations in quantum materials. However, thermal transport measurements in low dimensions are dominated by the phonon contribution of the lattice. An experimental approach to isolate the electronic thermal conductance is needed. Here, we show how the measurement of nonlocal voltage fluctuations in a multiterminal device can reveal the electronic heat transported across a mesoscopic bridge made of low-dimensional materials. By using graphene as a noise thermometer, we demonstrate quantitative electronic thermal conductance measurements of graphene and carbon nanotubes up to 70K, achieving a precision of ~1% of the thermal conductance quantum at 5K. Employing linear and nonlinear thermal transport, we observe signatures of long-range interaction-mediated energy transport in 1D, in agreement with a theoretical model. Our versatile nonlocal noise thermometry allows new experiments probing energy transport in emergent states of matter in low dimensions.

قيم البحث

اقرأ أيضاً

The ability to transport energy is a fundamental property of the two-dimensional Dirac fermions in graphene. Electronic thermal transport in this system is relatively unexplored and is expected to show unique fundamental properties and to play an imp ortant role in future applications of graphene, including opto-electronics, plasmonics, and ultra-sensitive bolometry. Here we present measurements of bipolar, electron-diffusion and electron-phonon thermal conductances, and infer the electronic specific heat, with a minimum value of 10 $k_{rm{B}}$ ($10^{-22}$ JK$^{-1}$) per square micron. We test the validity of the Wiedemann-Franz law and find the Lorenz number equals $1.32times(pi^2/3)(k_{rm{B}}/e)^2$. The electron-phonon thermal conductance has a temperature power law $T^2$ at high doping levels, and the coupling parameter is consistent with recent theory, indicating its enhancement by impurity scattering. We demonstrate control of the thermal conductance by electrical gating and by suppressing the diffusion channel using superconducting electrodes, which sets the stage for future graphene-based single microwave photon detection.
The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS$_2$ with AlN and SiO$_2$, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MWm$^-$$^2$K$^-$$^1$ near room temperature, increasing as ~ T$^0$$^.$$^6$$^5$ in the range 300 - 600 K. The similar TBC of MoS$_2$ with the two substrates indicates that MoS$_2$ is the softer material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. Our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.
We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system -- emph{biased bilayer}. The effect of the perpendicular electric fiel d is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its 4-band and 2-band continuum approximations, and the 4-band model is shown to be always a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, either made out of SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point to understand the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, as the second-nearest-neighbor hopping energies $t$ (in-plane) and $gamma_{4}$ (inter-layer), and the on-site energy $Delta$.
334 - B.N. Narozhny , I.V. Gornyi 2021
In nearly compensated graphene, disorder-assisted electron-phonon scattering or supercollisions are responsible for both quasiparticle recombination and energy relaxation. Within the hydrodynamic approach, these processes contribute weak decay terms to the continuity equations at local equilibrium, i.e., at the level of ideal hydrodynamics. Here we report the derivation of the decay term due to weak violation of energy conservation. Such terms have to be considered on equal footing with the well-known recombination terms due to nonconservation of the number of particles in each band. At high enough temperatures in the hydrodynamic regime supercollisions dominate both types of the interaction). We also discuss the contribution of supercollisions to the heat transfer equation (generalizing the continuity equation for the energy density in viscous hydrodynamics).
Coupling high quality, suspended atomic membranes to specialized electrodes enables investigation of many novel phenomena, such as spin or Cooper pair transport in these two dimensional systems. However, many electrode materials are not stable in aci ds that are used to dissolve underlying substrates. Here we present a versatile and powerful multi-level lithographical technique to suspend atomic membranes, which can be applied to the vast majority of substrate, membrane and electrode materials. Using this technique, we fabricated suspended graphene devices with Al electrodes and mobility of 5500 cm^2/Vs. We also demonstrate, for the first time, fabrication and measurement of a free-standing thin Bi2Se3 membrane, which has low contact resistance to electrodes and a mobility of >~500 cm^2/Vs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا