ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensor Network for Supervised Learning at Finite Temperature

68   0   0.0 ( 0 )
 نشر من قبل Shuqian Ye
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The large variation of datasets is a huge barrier for image classification tasks. In this paper, we embraced this observation and introduce the finite temperature tensor network (FTTN), which imports the thermal perturbation into the matrix product states framework by placing all images in an environment with constant temperature, in analog to energy-based learning. Tensor network is chosen since it is the best platform to introduce thermal fluctuation. Different from traditional network structure which directly takes the summation of individual losses as its loss function, FTTN regards it as thermal average loss computed from the entanglement with the environment. The temperature-like parameter can be automatically optimized, which gives each database an individual temperature. FTTN obtains improvement in both test accuracy and convergence speed in several datasets. The non-zero temperature automatically separates similar features, avoiding the wrong classification in previous architecture. The thermal fluctuation may give a better improvement in other frameworks, and we may also implement the temperature of database to improve the training effect.

قيم البحث

اقرأ أيضاً

Semi-supervised learning algorithms typically construct a weighted graph of data points to represent a manifold. However, an explicit graph representation is problematic for neural networks operating in the online setting. Here, we propose a feed-for ward neural network capable of semi-supervised learning on manifolds without using an explicit graph representation. Our algorithm uses channels that represent localities on the manifold such that correlations between channels represent manifold structure. The proposed neural network has two layers. The first layer learns to build a representation of low-dimensional manifolds in the input data as proposed recently in [8]. The second learns to classify data using both occasional supervision and similarity of the manifold representation of the data. The channel carrying label information for the second layer is assumed to be silent most of the time. Learning in both layers is Hebbian, making our network design biologically plausible. We experimentally demonstrate the effect of semi-supervised learning on non-trivial manifolds.
We study the problem of semi-supervised learning on graphs, for which graph neural networks (GNNs) have been extensively explored. However, most existing GNNs inherently suffer from the limitations of over-smoothing, non-robustness, and weak-generali zation when labeled nodes are scarce. In this paper, we propose a simple yet effective framework---GRAPH RANDOM NEURAL NETWORKS (GRAND)---to address these issues. In GRAND, we first design a random propagation strategy to perform graph data augmentation. Then we leverage consistency regularization to optimize the prediction consistency of unlabeled nodes across different data augmentations. Extensive experiments on graph benchmark datasets suggest that GRAND significantly outperforms state-of-the-art GNN baselines on semi-supervised node classification. Finally, we show that GRAND mitigates the issues of over-smoothing and non-robustness, exhibiting better generalization behavior than existing GNNs. The source code of GRAND is publicly available at https://github.com/Grand20/grand.
With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning co mmunity. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases (i.e., Alzheimers disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes.
130 - Xiao Wang , Nian Liu , Hui Han 2021
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide u se in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.
We propose and analyze a method for semi-supervised learning from partially-labeled network-structured data. Our approach is based on a graph signal recovery interpretation under a clustering hypothesis that labels of data points belonging to the sam e well-connected subset (cluster) are similar valued. This lends naturally to learning the labels by total variation (TV) minimization, which we solve by applying a recently proposed primal-dual method for non-smooth convex optimization. The resulting algorithm allows for a highly scalable implementation using message passing over the underlying empirical graph, which renders the algorithm suitable for big data applications. By applying tools of compressed sensing, we derive a sufficient condition on the underlying network structure such that TV minimization recovers clusters in the empirical graph of the data. In particular, we show that the proposed primal-dual method amounts to maximizing network flows over the empirical graph of the dataset. Moreover, the learning accuracy of the proposed algorithm is linked to the set of network flows between data points having known labels. The effectiveness and scalability of our approach is verified by numerical experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا