ﻻ يوجد ملخص باللغة العربية
Electroactive polymer thin films undergo repeated reversible structural change during operation in electrochemical applications. While synchrotron X-ray scattering is powerful for the characterization of stand-alone and ex-situ organic thin films, in situ structural characterization has been underutilized--in large part due to complications arising from supporting electrolyte scattering. This has greatly hampered the development of application relevant structure property relationships. Therefore, we have developed a new methodology for in situ and operando X-ray characterization that separates the incident and scattered X-ray beam path from the electrolyte. As a proof of concept, we demonstrate the in situ structural changes of weakly-scattering, organic mixed ionic-electronic conductor thin films in an aqueous electrolyte environment, enabling access to previously unexplored changes in the pi-pi peak and diffuse scatter in situ, while capturing the solvent swollen thin film structure which was inaccessible in previous ex situ studies. These in situ measurements improve the sensitivity to structural changes, capturing minute changes not possible ex situ, and have multimodal potential such as combined Raman measurements that also serve to validate the true in situ/operando conditions of the cell. Finally, we examine new directions enabled by this operando cell design and compare state of the art measurements.
We present depth-resolved experimental results on the atomic and electronic structures of the Co-Cr interface on four IrMn/Cr/Co thin films with variable thickness of the Cr layer. Grazing incidence X-ray absorption near edge structure near the Cr K-
We have developed an experimental system to simultaneously observe surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring X-ray photoel
Non-destructive determination of lithium distribution in a working battery is key for addressing both efficiency and safety issues. Although various techniques have been developed to map the lithium distribution in electrodes, these methods are mostl
Grazing incidence x-ray surface scattering has been used to investigate liquid surfaces down to the molecular scale. The free surface of water is well described by the capillary wave model (<z(q)z(-q)> ~ q-2 spectrum) up to wavevectors > 10^8 m^-1. A
Observing ultrafast structural changes in nanoscale systems is essential for understanding the dynamics of intense light-matter interactions, which play a pivotal role in material processing, ultrafast phase transitions and diagnosis of matter under