ﻻ يوجد ملخص باللغة العربية
While improvements have been made in automatic speech recognition performance over the last several years, machines continue to have significantly lower performance on accented speech than humans. In addition, the most significant improvements on accented speech primarily arise by overwhelming the problem with hundreds or even thousands of hours of data. Humans typically require much less data to adapt to a new accent. This paper explores methods that are inspired by human perception to evaluate possible performance improvements for recognition of accented speech, with a specific focus on recognizing speech with a novel accent relative to that of the training data. Our experiments are run on small, accessible datasets that are available to the research community. We explore four methodologies: pre-exposure to multiple accents, grapheme and phoneme-based pronunciations, dropout (to improve generalization to a novel accent), and the identification of the layers in the neural network that can specifically be associated with accent modeling. Our results indicate that methods based on human perception are promising in reducing WER and understanding how accented speech is modeled in neural networks for novel accents.
Local dialects influence people to pronounce words of the same language differently from each other. The great variability and complex characteristics of accents creates a major challenge for training a robust and accent-agnostic automatic speech rec
We introduce the problem of adapting a black-box, cloud-based ASR system to speech from a target accent. While leading online ASR services obtain impressive performance on main-stream accents, they perform poorly on sub-populations - we observed that
The availability of open-source software is playing a remarkable role in the popularization of speech recognition and deep learning. Kaldi, for instance, is nowadays an established framework used to develop state-of-the-art speech recognizers. PyTorc
Transcription or sub-titling of open-domain videos is still a challenging domain for Automatic Speech Recognition (ASR) due to the datas challenging acoustics, variable signal processing and the essentially unrestricted domain of the data. In previou
Deep neural networks can learn complex and abstract representations, that are progressively obtained by combining simpler ones. A recent trend in speech and speaker recognition consists in discovering these representations starting from raw audio sam