ﻻ يوجد ملخص باللغة العربية
We study the anisotropic properties of dynamical quantities: direct current (DC) conductivity and butterfly velocity. The anisotropy plays a crucial role in determining the phase structure of the two-lattice system. Even a small deviation from isotropy can lead to distinct phase structures, as well as the IR fixed points of our holographic systems. In particular, for anisotropic cases, the most important property is that the IR fixed point can be non-AdS$_2 times mathbb R^2$ even for metallic phases. As that of a one-lattice system, the butterfly velocity can also diagnose the quantum phase transition (QPT) in this two-dimensional anisotropic latticed system.
In this paper, we explore the properties of holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP) in holographic Lifshitz theory. These informational quantities exhibit some universal properties of hol
We initiate the investigation of the zero temperature holographic superfluids with two competing orders, where besides the vacuum phase, two one band superfluid phases, the coexistent superfluid phase has also been found in the AdS soliton background
We analyze the holographic subregion complexity in a $3d$ black hole with the vector hair. This $3d$ black hole is dual to a $1+1$ dimensional $p$-wave superconductor. We probe the black hole by changing the size of the interval and by fixing $q$ or
Using the volume of the space enclosed by the Ryu-Takayanagi (RT) surface, we study the complexity of the disk-shape subregion (with radius R) in various (2+1)-dimensional gapped systems with gravity dual. These systems include a class of toy models