ﻻ يوجد ملخص باللغة العربية
In this paper, we explore the properties of holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP) in holographic Lifshitz theory. These informational quantities exhibit some universal properties of holographic dual field theory. For most configuration parameters and temperatures, these informational quantities change monotonously with the Lifshitz dynamical critical exponent $z$. However, we also observe some non-monotonic behaviors for these informational quantities in some specific spaces of configuration parameters and temperatures. A particularly interesting phenomenon is that a dome-shaped diagram emerges in the behavior of MI vs $z$, and correspondingly a trapezoid-shaped profile appears in that of EoP vs $z$. This means that for some specific configuration parameters and temperatures, the system measured in terms of MI and EoP is entangled only in a certain intermediate range of $z$.
We construct an analytic solution for a one-parameter family of holographic superconductors in asymptotically Lifshitz spacetimes. We utilize this solution to explore various properties of the systems such as (1) the superfluid phase background and t
We study the information quantities, including the holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP), over Gubser-Rocha model. The remarkable property of this model is the zero entropy density at g
In the AdS$_3$/CFT$_2$ correspondence, we find some conformal field theory (CFT) states that have no bulk description by the Ba~nados geometry. We elaborate the constraints for a CFT state to be geometric, i.e., having a dual Ba~nados metric, by comp
We consider Lifshitz-type scalar theories with explicit breaking of the Lorentz symmetry that, in addition, exhibit anisotropic scaling laws near the ultraviolet fixed point. Using the proper time regularization method on the spatial coordinates only
We study holographic superconductors in a Hov{r}ava-Lifshitz black hole without the condition of the detailed balance. We show that it is easier for the scalar hair to form as the parameter of the detailed balance becomes larger, but harder when the