ﻻ يوجد ملخص باللغة العربية
Magnetic monopoles have been a subject of study for more than a century since the first ideas by A. Vaschy and P. Curie, circa 1890. In 1974, Y. Nambu proposed a model for magnetic monopoles exploring a parallelism between the broken symmetry Higgs and the superconductivity Ginzburg-Landau theories in order to describe the pions quark-antiquark confinement states. There, Nambu describes an energetic string where its end points behave like two magnetic monopoles with opposite magnetic charges -- quark and antiquark. Consequently, not only the interaction among monopole and antimonopole, mediated by a massive vector boson (Yukawa potential), but also the energetic string (linear potential) contributes to the effective interaction potential. We propose here a monopole-antimonopole non confining attractive interaction of the Nambu-type, and then investigate the formation of bound states, the monopolium. Some necessary conditions for the existence of bound states to be fulfilled by the proposed Nambu-type potential, Kato weakness, Set^o and Bargmann conditions, are verified. In the following, ground state energies are estimated for a variety of monopolium reduced mass, from $10^2$MeV to $10^2$TeV, and Compton interaction lengths, from $10^{-2}$am to $10^{-1}$pm, where discussion about non relativistic and relativistic limits validation is carried out.
An eternally inflating universe produces an infinite amount of spatial volume, so every possible event happens an infinite number of times, and it is impossible to define probabilities in terms of frequencies. This problem is usually addressed by mea
The path integral over Euclidean geometries for the recently suggested density matrix of the Universe is shown to describe a microcanonical ensemble in quantum cosmology. This ensemble corresponds to a uniform (weight one) distribution in phase space
We present a critical assessment of the SN1987A supernova cooling bound on axions and other light particles. Core-collapse simulations used in the literature to substantiate the bound omitted from the calculation the envelope exterior to the proto-ne
It is speculated that there might be some linkage between interstellar aldehydes and their corresponding alcohols. Here, an observational study and astrochemical modeling are coupled together to illustrate the connection between them. The ALMA Cycle
We show that if Dark Matter is made up of light bosons, they form a Bose-Einstein condensate in the early Universe. This in turn naturally induces a Dark Energy of approximately equal density and exerting negative pressure.This explains the so-called coincidence problem.