ﻻ يوجد ملخص باللغة العربية
The one-body reduced density matrix $gamma$ plays a fundamental role in describing and predicting quantum features of bosonic systems, such as Bose-Einstein condensation. The recently proposed reduced density matrix functional theory for bosonic ground states establishes the existence of a universal functional $mathcal{F}[gamma]$ that recovers quantum correlations exactly. Based on a novel decomposition of $gamma$, we have developed a method to design reliable approximations for such universal functionals: our results suggest that for translational invariant systems the constrained search approach of functional theories can be transformed into an unconstrained problem through a parametrization of an Euclidian space. This simplification of the search approach allows us to use standard machine-learning methods to perform a quite efficient computation of both $mathcal{F}[gamma]$ and its functional derivative. For the Bose-Hubbard model, we present a comparison between our approach and Quantum Monte Carlo.
In this work we explore the potential of a new data-driven approach to the design of exchange-correlation (XC) functionals. The approach, inspired by convolutional filters in computer vision and surrogate functions from optimization, utilizes convolu
Suppose that three kinds of quantum systems are given in some unknown states $ket f^{otimes N}$, $ket{g_1}^{otimes K}$, and $ket{g_2}^{otimes K}$, and we want to decide which textit{template} state $ket{g_1}$ or $ket{g_2}$, each representing the feat
Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of non-interacting fermions in 1d, mean absolute errors below 1 kcal/mol on test densities similar to the training set are reached with fewer tha
Machine learning is employed to build an energy density functional for self-bound nuclear systems for the first time. By learning the kinetic energy as a functional of the nucleon density alone, a robust and accurate orbital-free density functional f
In recent years, there is a growing interest in using quantum computers for solving combinatorial optimization problems. In this work, we developed a generic, machine learning-based framework for mapping continuous-space inverse design problems into