ﻻ يوجد ملخص باللغة العربية
Suppose that three kinds of quantum systems are given in some unknown states $ket f^{otimes N}$, $ket{g_1}^{otimes K}$, and $ket{g_2}^{otimes K}$, and we want to decide which textit{template} state $ket{g_1}$ or $ket{g_2}$, each representing the feature of the pattern class ${cal C}_1$ or ${cal C}_2$, respectively, is closest to the input textit{feature} state $ket f$. This is an extension of the pattern matching problem into the quantum domain. Assuming that these states are known a priori to belong to a certain parametric family of pure qubit systems, we derive two kinds of matching strategies. The first is a semiclassical strategy which is obtained by the natural extension of conventional matching strategies and consists of a two-stage procedure: identification (estimation) of the unknown template states to design the classifier (textit{learning} process to train the classifier) and classification of the input system into the appropriate pattern class based on the estimated results. The other is a fully quantum strategy without any intermediate measurement which we might call as the {it universal quantum matching machine}. We present the Bayes optimal solutions for both strategies in the case of K=1, showing that there certainly exists a fully quantum matching procedure which is strictly superior to the straightforward semiclassical extension of the conventional matching strategy based on the learning process.
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Since quantum systems produce counter-intuitive patterns believed not to be efficiently produced by cl
Distributed training across several quantum computers could significantly improve the training time and if we could share the learned model, not the data, it could potentially improve the data privacy as the training would happen where the data is lo
We study the quantum synchronization between a pair of two-level systems inside two coupled cavities. By using a digital-analog decomposition of the master equation that rules the system dynamics, we show that this approach leads to quantum synchroni
In this work we present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems. The classical infrastructure is based on PyTorch and we provide a standardized desi
Quantum computers are expected to surpass the computational capabilities of classical computers during this decade, and achieve disruptive impact on numerous industry sectors, particularly finance. In fact, finance is estimated to be the first indust