ﻻ يوجد ملخص باللغة العربية
Despite the substantial progress of active learning for image recognition, there still lacks an instance-level active learning method specified for object detection. In this paper, we propose Multiple Instance Active Object Detection (MI-AOD), to select the most informative images for detector training by observing instance-level uncertainty. MI-AOD defines an instance uncertainty learning module, which leverages the discrepancy of two adversarial instance classifiers trained on the labeled set to predict instance uncertainty of the unlabeled set. MI-AOD treats unlabeled images as instance bags and feature anchors in images as instances, and estimates the image uncertainty by re-weighting instances in a multiple instance learning (MIL) fashion. Iterative instance uncertainty learning and re-weighting facilitate suppressing noisy instances, toward bridging the gap between instance uncertainty and image-level uncertainty. Experiments validate that MI-AOD sets a solid baseline for instance-level active learning. On commonly used object detection datasets, MI-AOD outperforms state-of-the-art methods with significant margins, particularly when the labeled sets are small. Code is available at https://github.com/yuantn/MI-AOD.
Active learning aims to improve the performance of task model by selecting the most informative samples with a limited budget. Unlike most recent works that focused on applying active learning for image classification, we propose an effective Consist
Vanilla models for object detection and instance segmentation suffer from the heavy bias toward detecting frequent objects in the long-tailed setting. Existing methods address this issue mostly during training, e.g., by re-sampling or re-weighting. I
We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The proposed approach has three key ingredients: (1) 3D object model
We propose a novel, conceptually simple and general framework for instance segmentation on 3D point clouds. Our method, called 3D-BoNet, follows the simple design philosophy of per-point multilayer perceptrons (MLPs). The framework directly regresses
Convolutional Neural Networks (CNN) have demon- strated its successful applications in computer vision, speech recognition, and natural language processing. For object recog- nition, CNNs might be limited by its strict label requirement and an implic