ﻻ يوجد ملخص باللغة العربية
The convergence rate in Wasserstein distance is estimated for the empirical measures of symmetric semilinear SPDEs. Unlike in the finite-dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is of log order with a power given by eigenvalues of the underlying linear operator.
Let $X_t$ be the (reflecting) diffusion process generated by $L:=Delta+ abla V$ on a complete connected Riemannian manifold $M$ possibly with a boundary $partial M$, where $Vin C^1(M)$ such that $mu(d x):= e^{V(x)}d x$ is a probability measure. We es
Let $M$ be a connected compact Riemannian manifold possibly with a boundary, let $Vin C^2(M)$ such that $mu(d x):=e^{V(x)}d x$ is a probability measure, where $d x$ is the volume measure, and let $L=Delta+ abla V$. The exact convergence rate in Wasse
We consider a sequence of identically independently distributed random samples from an absolutely continuous probability measure in one dimension with unbounded density. We establish a new rate of convergence of the $infty-$Wasserstein distance betwe
The following type exponential convergence is proved for (non-degenerate or degenerate) McKean-Vlasov SDEs: $$W_2(mu_t,mu_infty)^2 +{rm Ent}(mu_t|mu_infty)le c {rm e}^{-lambda t} minbig{W_2(mu_0, mu_infty)^2,{rm Ent}(mu_0|mu_infty)big}, tge 1,$$ whe
Consider the empirical measure, $hat{mathbb{P}}_N$, associated to $N$ i.i.d. samples of a given probability distribution $mathbb{P}$ on the unit interval. For fixed $mathbb{P}$ the Wasserstein distance between $hat{mathbb{P}}_N$ and $mathbb{P}$ is a