ترغب بنشر مسار تعليمي؟ اضغط هنا

Inference Time Style Control for Summarization

78   0   0.0 ( 0 )
 نشر من قبل Shuyang Cao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

How to generate summaries of different styles without requiring corpora in the target styles, or training separate models? We present two novel methods that can be deployed during summary decoding on any pre-trained Transformer-based summarization model. (1) Decoder state adjustment instantly modifies decoder final states with externally trained style scorers, to iteratively refine the output against a target style. (2) Word unit prediction constrains the word usage to impose strong lexical control during generation. In experiments of summarizing with simplicity control, automatic evaluation and human judges both find our models producing outputs in simpler languages while still informative. We also generate news headlines with various ideological leanings, which can be distinguished by humans with a reasonable probability.



قيم البحث

اقرأ أيضاً

64 - Shuyang Cao , Lu Wang 2021
How can we effectively inform content selection in Transformer-based abstractive summarization models? In this work, we present a simple-yet-effective attention head masking technique, which is applied on encoder-decoder attentions to pinpoint salien t content at inference time. Using attention head masking, we are able to reveal the relation between encoder-decoder attentions and content selection behaviors of summarization models. We then demonstrate its effectiveness on three document summarization datasets based on both in-domain and cross-domain settings. Importantly, our models outperform prior state-of-the-art models on CNN/Daily Mail and New York Times datasets. Moreover, our inference-time masking technique is also data-efficient, requiring only 20% of the training samples to outperform BART fine-tuned on the full CNN/DailyMail dataset.
In this work, we propose global style tokens (GSTs), a bank of embeddings that are jointly trained within Tacotron, a state-of-the-art end-to-end speech synthesis system. The embeddings are trained with no explicit labels, yet learn to model a large range of acoustic expressiveness. GSTs lead to a rich set of significant results. The soft interpretable labels they generate can be used to control synthesis in novel ways, such as varying speed and speaking style - independently of the text content. They can also be used for style transfer, replicating the speaking style of a single audio clip across an entire long-form text corpus. When trained on noisy, unlabeled found data, GSTs learn to factorize noise and speaker identity, providing a path towards highly scalable but robust speech synthesis.
Unsupervised style transfer aims to change the style of an input sentence while preserving its original content without using parallel training data. In current dominant approaches, owing to the lack of fine-grained control on the influence from the target style,they are unable to yield desirable output sentences. In this paper, we propose a novel attentional sequence-to-sequence (Seq2seq) model that dynamically exploits the relevance of each output word to the target style for unsupervised style transfer. Specifically, we first pretrain a style classifier, where the relevance of each input word to the original style can be quantified via layer-wise relevance propagation. In a denoising auto-encoding manner, we train an attentional Seq2seq model to reconstruct input sentences and repredict word-level previously-quantified style relevance simultaneously. In this way, this model is endowed with the ability to automatically predict the style relevance of each output word. Then, we equip the decoder of this model with a neural style component to exploit the predicted wordlevel style relevance for better style transfer. Particularly, we fine-tune this model using a carefully-designed objective function involving style transfer, style relevance consistency, content preservation and fluency modeling loss terms. Experimental results show that our proposed model achieves state-of-the-art performance in terms of both transfer accuracy and content preservation.
128 - Jicheng Li , Yang Feng , Jiao Ou 2021
Text style transfer aims to change the style of sentences while preserving the semantic meanings. Due to the lack of parallel data, the Denoising Auto-Encoder (DAE) is widely used in this task to model distributions of different sentence styles. Howe ver, because of the conflict between the target of the conventional denoising procedure and the target of style transfer task, the vanilla DAE can not produce satisfying enough results. To improve the transferability of the model, most of the existing works combine DAE with various complicated unsupervised networks, which makes the whole system become over-complex. In this work, we design a novel DAE model named Style-Enhanced DAE (SE-DAE), which is specifically designed for the text style transfer task. Compared with previous complicated style-transfer models, our model do not consist of any complicated unsupervised networks, but only relies on the high-quality pseudo-parallel data generated by a novel data refinement mechanism. Moreover, to alleviate the conflict between the targets of the conventional denoising procedure and the style transfer task, we propose another novel style denoising mechanism, which is more compatible with the target of the style transfer task. We validate the effectiveness of our model on two style benchmark datasets. Both automatic evaluation and human evaluation show that our proposed model is highly competitive compared with previous strong the state of the art (SOTA) approaches and greatly outperforms the vanilla DAE.
We present a novel system providing summaries for Computer Science publications. Through a qualitative user study, we identified the most valuable scenarios for discovery, exploration and understanding of scientific documents. Based on these findings , we built a system that retrieves and summarizes scientific documents for a given information need, either in form of a free-text query or by choosing categorized values such as scientific tasks, datasets and more. Our system ingested 270,000 papers, and its summarization module aims to generate concise yet detailed summaries. We validated our approach with human experts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا