ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Entanglement Entropy in Gaussian cMERA

126   0   0.0 ( 0 )
 نشر من قبل Jose Juan Fernandez-Melgarejo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The continuous Multi Scale Entanglement Renormalization Anstaz (cMERA) consists of a variational method which carries out a real space renormalization scheme on the wavefunctionals of quantum field theories. In this work we calculate the entanglement entropy of the half space for a free scalar theory through a Gaussian cMERA circuit. We obtain the correct entropy written in terms of the optimized cMERA variational parameter, the local density of disentanglers. Accordingly, using the entanglement entropy production per unit scale, we study local areas in the bulk of the tensor network in terms of the differential entanglement generated along the cMERA flow. This result spurs us to establish an explicit relation between the cMERA variational parameter and the radial component of a dual AdS geometry through the Ryu-Takayanagi formula. Finally, based on recent formulations of non-Gaussian cMERA circuits, we argue that the entanglement entropy for the half space can be written as an integral along the renormalization scale whose measure is given by the Fisher information metric of the cMERA circuit. Consequently, a straightforward relation between AdS geometry and the Fisher information metric is also established.



قيم البحث

اقرأ أيضاً

We present how the surface/state correspondence, conjectured in arXiv:1503.03542, works in the setup of AdS3/CFT2 by generalizing the formulation of cMERA. The boundary states in conformal field theories play a crucial role in our formulation and the bulk diffeomorphism is naturally taken into account. We give an identification of bulk local operators which reproduces correct scalar field solutions on AdS3 and bulk scalar propagators. We also calculate the information metric for a locally excited state and show that it is given by that of 2d hyperbolic manifold, which is argued to describe the time slice of AdS3.
We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductors. We employ a numerical approach to consider the robust case of fully back-reacted gravity system. The hairy black hole solution is found by usi ng our numerical scheme. Then it is used to compute the HEE for the superconducting case. The cases we study show that in presence of a mismatch between two chemical potentials, below the critical temperature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-Nordstrom black hole phase. Interestingly, the effects of chemical imbalance are different in the contexts of black hole and superconducting phases. For black hole, HEE increases with increasing imbalance parameter while it behaves oppositely for the superconducting phase. The implications of these results are discussed.
In this work we provide a method to study the entanglement entropy for non-Gaussian states that minimize the energy functional of interacting quantum field theories at arbitrary coupling. To this end, we build a class of non-Gaussian variational tria l wavefunctionals with the help of exact nonlinear canonical transformations. The calculability emph{bonanza} shown by these variational emph{ansatze} allows us to compute the entanglement entropy using the prescription for the ground state of free theories. In free theories, the entanglement entropy is determined by the two-point correlation functions. For the interacting case, we show that these two-point correlators can be replaced by their nonperturbatively corrected counterparts. Upon giving some general formulae for general interacting models we calculate the entanglement entropy of half space and compact regions for the $phi^4$ scalar field theory in 2D. Finally, we analyze the r^ole played by higher order correlators in our results and show that strong subadditivity is satisfied.
In this work, a non-Gaussian cMERA tensor network for interacting quantum field theories (icMERA) is presented. This consists of a continuous tensor network circuit in which the generator of the entanglement renormalization of the wavefunction is non perturbatively extended with nonquadratic variational terms. The icMERA circuit nonperturbatively implements a set of scale dependent nonlinear transformations on the fields of the theory, which suppose a generalization of the scale dependent linear transformations induced by the Gaussian cMERA circuit. Here we present these transformations for the case of self-interacting scalar and fermionic field theories. Finally, the icMERA tensor network is fully optimized for the $lambda phi^4$ theory in $(1+1)$ dimensions. This allows us to evaluate, nonperturbatively, the connected parts of the two- and four-point correlation functions. Our results show that icMERA wavefunctionals encode proper non-Gaussian correlations of the theory, thus providing a new variational tool to study phenomena related with strongly interacting field theories.
We present a new class of local quenches described by mixed states, parameterized universally by two parameters. We compute the evolutions of entanglement entropy for both a holographic and Dirac fermion CFT in two dimensions. This turns out to be eq uivalent to calculations of two point functions on a torus. We find that in holographic CFTs, the results coincide with the known results of pure state local operator quenches. On the other hand, we obtain new behaviors in the Dirac fermion CFT, which are missing in the pure state counterpart. By combining our results with the inequalities known for von-Neumann entropy, we obtain an upper bound of the pure state local operator quenches in the Dirac fermion CFT. We also explore predictions about the behaviors of entanglement entropy for more general mixed states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا