ﻻ يوجد ملخص باللغة العربية
We present a new class of local quenches described by mixed states, parameterized universally by two parameters. We compute the evolutions of entanglement entropy for both a holographic and Dirac fermion CFT in two dimensions. This turns out to be equivalent to calculations of two point functions on a torus. We find that in holographic CFTs, the results coincide with the known results of pure state local operator quenches. On the other hand, we obtain new behaviors in the Dirac fermion CFT, which are missing in the pure state counterpart. By combining our results with the inequalities known for von-Neumann entropy, we obtain an upper bound of the pure state local operator quenches in the Dirac fermion CFT. We also explore predictions about the behaviors of entanglement entropy for more general mixed states.
We derive dynamics of the entanglement wedge cross section from the reflected entropy for local operator quench states in the holographic CFT. By comparing between the reflected entropy and the mutual information in this dynamical setup, we argue tha
Understanding quantum entanglement in interacting higher-dimensional conformal field theories is a challenging task, as direct analytical calculations are often impossible to perform. With holographic entanglement entropy, calculations of entanglemen
Quantum corrections to the entanglement entropy of matter fields interacting with dynamical gravity have proven to be very important in the study of the black hole information problem. We consider a one-particle excited state of a massive scalar fiel
In this work, a canonical method to compute entanglement entropy is proposed. We show that for two-dimensional conformal theories defined in a torus, a choice of moduli space allows the typical entropy operator of the TFD to provide the entanglement
From the partition function for two classes of classically non-local actions containing the fractional Laplacian, we show that as long as there exists a suitable (non-local) Hilbert-space transform the underlying action can be mapped onto a purely lo