ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering the Quantum Scientific Computing Open User Testbed (QSCOUT): Design details and user guide

423   0   0.0 ( 0 )
 نشر من قبل Susan Clark
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Quantum Scientific Computing Open User Testbed (QSCOUT) at Sandia National Laboratories is a trapped-ion qubit system designed to evaluate the potential of near-term quantum hardware in scientific computing applications for the US Department of Energy (DOE) and its Advanced Scientific Computing Research (ASCR) program. Similar to commercially available platforms, most of which are based on superconducting qubits, it offers quantum hardware that researchers can use to perform quantum algorithms, investigate noise properties unique to quantum systems, and test novel ideas that will be useful for larger and more powerful systems in the future. However, unlike most other quantum computing testbeds, QSCOUT uses trapped $^{171}$Yb$^{+}$ ions as the qubits, provides full connectivity between qubits, and allows both quantum circuit and low-level pulse control access to study new modes of programming and optimization. The purpose of this manuscript is to provide users and the general community with details of the QSCOUT hardware and its interface, enabling them to take maximum advantage of its capabilities.



قيم البحث

اقرأ أيضاً

Phase retrieval refers to the recovery of signals from the magnitudes (and not the phases) of linear measurements. While there has been a recent explosion in development of phase retrieval methods, the lack of a common interface has made it difficult to compare new methods against the current state-of-the-art. PhasePack is a software library that creates a common interface for a wide range of phase retrieval schemes. PhasePack also provides a test bed for phase retrieval methods using both synthetic data and publicly available empirical datasets.
159 - Makoto Natsuume 2014
This is the draft/updated version of a textbook on real-world applications of the AdS/CFT duality for beginning graduate students in particle physics and for researchers in the other fields. The aim of this book is to provide background materials suc h as string theory, general relativity, nuclear physics, nonequilibrium physics, and condensed-matter physics as well as some key applications of the AdS/CFT duality in a single textbook. Contents: (1) Introduction, (2) General relativity and black holes, (3) Black holes and thermodynamics, (4) Strong interaction and gauge theories, (5) The road to AdS/CFT, (6) The AdS spacetime, (7) AdS/CFT - equilibrium, (8) AdS/CFT - adding probes, (9) Basics of nonequilibrium physics, (10) AdS/CFT - nonequilibrium, (11) Other AdS spacetimes, (12) Applications to quark-gluon plasma, (13) Basics of phase transition, (14) AdS/CFT - phase transition, (15) Exercises.
DDSCAT 7.3 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of target unit cells, allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008), and efficient near-field calculations in Flatau & Draine (2012). DDSCAT 7.3 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import arbitrary target geometries into the code. DDSCAT automatically calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix for user-specified scattering directions. DDSCAT 7.3 can efficiently calculate E and B throughout a user-specified volume containing the target. This User Guide explains how to use DDSCAT 7.3 to carry out electromagnetic scattering calculations, including use of DDPOSTPROCESS, a Fortran-90 code to perform calculations with E and B at user-selected locations near the target. A number of changes have been made since the last release, DDSCAT 7.2 .
QSCOUT is the Quantum Scientific Computing Open User Testbed, a trapped-ion quantum computer testbed realized at Sandia National Laboratories on behalf of the Department of Energys Office of Science and its Advanced Scientific Computing (ASCR) progra m. Jaqal, for Just Another Quantum Assembly Language, is the programming language used to specify programs executed on QSCOUT. This document contains a specification of Jaqal along with a summary of QSCOUT 1.0 capabilities, example Jaqal programs, and plans for possible future extensions. To learn more about QSCOUT and the Jaqal language developed for it, please visit qscout.sandia.gov or send an e-mail to [email protected].
MadDM is an automated numerical tool for the computation of dark-matter observables for generic new physics models. We announce version 3.1 and summarize its features. Notably, the code goes beyond the mere cross-section computation for direct and in direct detection. For instance, it allows the user to compute the fully differential nuclear recoil rates as well as the energy spectra of photons, neutrinos and charged cosmic rays for arbitrary $2to n$ annihilation processes. This short user guide equips researchers with all the relevant information required to readily perform comprehensive phenomenological studies of particle dark-matter models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا