ﻻ يوجد ملخص باللغة العربية
MadDM is an automated numerical tool for the computation of dark-matter observables for generic new physics models. We announce version 3.1 and summarize its features. Notably, the code goes beyond the mere cross-section computation for direct and indirect detection. For instance, it allows the user to compute the fully differential nuclear recoil rates as well as the energy spectra of photons, neutrinos and charged cosmic rays for arbitrary $2to n$ annihilation processes. This short user guide equips researchers with all the relevant information required to readily perform comprehensive phenomenological studies of particle dark-matter models.
Automated tools for the computation of particle physics processes have become the backbone of phenomenological studies beyond the standard model. Here, we present MadDM v3.2. This release enables the fully automated computation of loop-induced dark-m
We present the updated version of MadDM, a new dark matter tool based on MadGraph5_aMC@NLO framework. New version includes direct detection capability in addition to relic abundance computation. In this article, we provide short description of the im
This is the draft/updated version of a textbook on real-world applications of the AdS/CFT duality for beginning graduate students in particle physics and for researchers in the other fields. The aim of this book is to provide background materials suc
Phase retrieval refers to the recovery of signals from the magnitudes (and not the phases) of linear measurements. While there has been a recent explosion in development of phase retrieval methods, the lack of a common interface has made it difficult
Asymmetric dark matter (ADM) is an attractive framework relating the observed baryon asymmetry of the Universe to the dark matter density. A composite particle in a new strong dynamics is a promising candidate for ADM as the strong dynamics naturally