ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmonic enhancement of molecular hydrogen dissociation on metallic magnesium nanoclusters

78   0   0.0 ( 0 )
 نشر من قبل Reinhard Maurer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light-driven plasmonic enhancement of chemical reactions on metal catalysts is a promising strategy to achieve highly selective and efficient chemical transformations. The study of plasmonic catalyst materials has traditionally focused on late transition metals such as Au, Ag, and Cu. In recent years, there has been increasing interest in the plasmonic properties of a set of earth-abundant elements such as Mg, which exhibit interesting hydrogenation chemistry with potential applications in hydrogen storage. This work explores the optical, electronic, and catalytic properties of a set of metallic Mg nanoclusters with up to 2057 atoms using time-dependent density functional tight-binding and density functional theory calculations. Our results show that Mg nanoclusters are able to produce highly energetic hot electrons with energies of up to 4 eV. By electronic structure analysis, we find that these hot electrons energetically align with electronic states of physisorbed molecular hydrogen, occupation of which by hot electrons can promote the hydrogen dissociation reaction. We also find that the reverse reaction, hydrogen evolution on metallic Mg, can potentially be promoted by hot electrons, but following a different mechanism. Thus, from a theoretical perspective, Mg nanoclusters display very promising behaviour for their use in light promoted storage and release of hydrogen.

قيم البحث

اقرأ أيضاً

Liquid metallic hydrogen (LMH) was recently produced under static compression and high temperatures in bench-top experiments. Here, we report a study of the optical reflectance of LMH in the pressure region of 1.4-1.7 Mbar and use the Drude free-elec tron model to determine its optical conductivity. We find static electrical conductivity of metallic hydrogen to be 11,000-15,000 S/cm. A substantial dissociation fraction is required to best fit the energy dependence of the observed reflectance. LMH at our experimental conditions is largely atomic and degenerate, not primarily molecular. We determine a plasma frequency and the optical conductivity. Properties are used to analyze planetary structure of hydrogen rich planets such as Jupiter.
Optical properties of compressed fluid hydrogen in the region where dissociation and metallization is observed are computed by ab-initio methods and compared to recent experimental results. We confirm that above 3000 K both processes are continuous w hile below 1500K the first order phase transition is accompanied by a discontinuity of the DC conductivity and the thermal conductivity, while both the reflectivity and absorption coefficient vary rapidly but continuously. Our results support the recent analysis of NIF experiments (P. Celliers et al, Science 361, 677-682 (2018)) which assigned the inception of metallization to pressures where the reflectivity is about 0.3. Our results also support the conclusion that the temperature plateau seen in laser-heated DAC experiments at temperatures higher than 1500 K corresponds to the onset of of optical absorption, not to the phase transition.
DNA origami is a novel self-assembly technique allowing one to form various 2D shapes and position matter with nanometer accuracy. It has been used to coordinate placement of nanoscale objects, both organic and inorganic; to make molecular motors and walkers; and to create optically active nanostructures. Here we use DNA origami templates to engineer Surfaced Enhanced Raman Scattering (SERS) substrates. Specifically, gold nanoparticles were selectively attached to the corners of rectangular origami and subsequently enlarged via solution-based metal deposition. The resulting assemblies were designed to form hot spots of enhanced electromagnetic field between the nanoparticles. We observed a significant enhancement of the Raman signal from molecules covalently attached to the assemblies, as compared to control nanoparticle samples which lack inter-particle hot spots. Our method opens up the prospects of using DNA origami to rationally engineer and assemble plasmonic structures for molecular spectroscopy.
A theoretical study is reported of the molecular-to-atomic transition in solid hydrogen at high pressure. We use the diffusion quantum Monte Carlo method to calculate the static lattice energies of the competing phases and a density-functional-theory -based vibrational self-consistent field method to calculate anharmonic vibrational properties. We find a small but significant contribution to the vibrational energy from anharmonicity. A transition from the molecular Cmca-12 direct to the atomic I4_1/amd phase is found at 374 GPa. The vibrational contribution lowers the transition pressure by 91 GPa. The dissociation pressure is not very sensitive to the isotopic composition. Our results suggest that quantum melting occurs at finite temperature.
144 - M. Pozzo , D. Alf`e , A. Amieiro 2008
It is well known, both theoretically and experimentally, that alloying MgH$_2$ with transition elements can significantly improve the thermodynamic and kinetic properties for H$_2$ desorption, as well as the H$_2$ intake by Mg bulk. Here we present a density functional theory investigation of hydrogen dissociation and surface diffusion over Ni-doped surface, and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when Ni/Ti are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H$_2$ dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e. faster hydrogenation of the Ni doped Mg sample as opposed to the reference Mg or Ti doped Mg.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا