ﻻ يوجد ملخص باللغة العربية
We propose a Leibniz algebra, to be called DD$^+$, which is a generalization of the Drinfeld double. We find that there is a one-to-one correspondence between a DD$^+$ and a Jacobi--Lie bialgebra, extending the known correspondence between a Lie bialgebra and a Drinfeld double. We then construct generalized frame fields $E_A{}^Mintext{O}(D,D)timesmathbb{R}^+$ satisfying the algebra $mathcal{L}_{E_A}E_B = - X_{AB}{}^C,E_C,$, where $X_{AB}{}^C$ are the structure constants of the DD$^+$ and $mathcal{L}$ is the generalized Lie derivative in double field theory. Using the generalized frame fields, we propose the Jacobi-Lie T-plurality and show that it is a symmetry of double field theory. We present several examples of the Jacobi-Lie T-plurality with or without Ramond-Ramond fields and the spectator fields.
Classical equations of motion for three-dimensional sigma-models in curved background are solved by a transformation that follows from the Poisson-Lie T-plurality and transform them into the equations in the flat background. Transformations of coordi
We define a supersymmetric quantum mechanics of fermions that take values in a simple Lie algebra. We summarize what is known about the spectrum and eigenspaces of the Laplacian which corresponds to the Koszul differential d. Firstly, we concentrate
Using topological string techniques, we compute BPS counting functions of 5d gauge theories which descend from 6d superconformal field theories upon circle compactification. Such theories are naturally organized in terms of nodes of Higgsing trees. W
We apply the method of holographic renormalization to computing black hole masses in asymptotically anti-de Sitter spaces. In particular, we demonstrate that the Hamilton-Jacobi approach to obtaining the boundary action yields a set of counterterms s
We conduct a series of experiments designed to empirically demonstrate the effects of varying the structural features of a multi-agent emergent communication game framework. Specifically, we model the interactions (edges) between individual agents (n