ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole mass and Hamilton-Jacobi counterterms

45   0   0.0 ( 0 )
 نشر من قبل James T. Liu
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the method of holographic renormalization to computing black hole masses in asymptotically anti-de Sitter spaces. In particular, we demonstrate that the Hamilton-Jacobi approach to obtaining the boundary action yields a set of counterterms sufficient to render the masses finite for four, five, six and seven-dimensional R-charged black holes in gauged supergravities. In addition, we prove that the familiar black hole thermodynamical expressions and in particular the first law continues to holds in general in the presence of arbitrary matter couplings to gravity.

قيم البحث

اقرأ أيضاً

In this note we discuss the application of the Hamilton-Jacobi formalism to the first order description of four dimensional spherically symmetric and static black holes. In particular we show that the prepotential characterizing the flow coincides wi th the Hamilton principal function associated with the one-dimensional effective Lagrangian. This implies that the prepotential can always be defined, at least locally in the radial variable and in the moduli space, both in the extremal and non-extremal case and allows us to conclude that it is duality invariant. We also give, in this framework, a general definition of the ``Weinhold metric in terms of which a necessary condition for the existence of multiple attractors is given. The Hamilton-Jacobi formalism can be applied both to the restricted phase space where the electromagnetic potentials have been integrated out as well as in the case where the electromagnetic potentials are dualized to scalar fields using the so-called three-dimensional Euclidean approach. We give some examples of application of the formalism, both for the BPS and the non-BPS black holes.
Recently, a practical approach to holographic renormalization has been developed based on the Hamilton-Jacobi formulation. Using a simple Einstein-scalar theory, we clarify that this approach does not conflict with the Hamiltonian constraint as it se ems. Then we apply it to the holographic renormalization of massive gravity. We assume that the shift vector is falling off fast enough asymptotically. We derive the counterterms up to the boundary dimension d=4. Interestingly, we find that the conformal anomaly can even occur in odd dimensions, which is different from the Einstein gravity. We check that the counterterms cancel the divergent part of the on-shell action at the background level. At the perturbation level, they are also applicable in several time-dependent cases.
190 - Nakwoo Kim , Se-Jin Kim 2020
We study the Hamilton-Jacobi formulation of effective mechanical actions associated with holographic renormalization group flows when the field theory is put on the sphere and mass terms are turned on. Although the system is supersymmetric and it is described by a superpotential, Hamiltons characteristic function is not readily given by the superpotential when the boundary of AdS is curved. We propose a method to construct the solution as a series expansion in scalar field degrees of freedom. The coefficients are functions of the warp factor to be determined by a differential equation one obtains when the ansatz is substituted into the Hamilton-Jacobi equation. We also show how the solution can be derived from the BPS equations without having to solve differential equations. The characteristic function readily provides information on holographic counterterms which cancel divergences of the on-shell action near the boundary of AdS.
We examine the real-time dynamics of a system of one or more black holes interacting with long wavelength gravitational fields. We find that the (classical) renormalizability of the effective field theory that describes this system necessitates the i ntroduction of a time dependent mass counterterm, and consequently the mass parameter must be promoted to a dynamical degree of freedom. To track the time evolution of this dynamical mass, we compute the expectation value of the energy-momentum tensor within the in-in formalism, and fix the time dependence by imposing energy-momentum conservation. Mass renormalization induces logarithmic ultraviolet divergences at quadratic order in the gravitational coupling, leading to a new time-dependent renormalization group (RG) equation for the mass parameter. We solve this RG equation and use the result to predict heretofore unknown high order logarithms in the energy distribution of gravitational radiation emitted from the system.
In holographic inflation, the $4D$ cosmological dynamics is postulated to be dual to the renormalization group flow of a $3D$ Euclidean conformal field theory with marginally relevant operators. The scalar potential of the $4D$ theory ---in which inf lation is realized--- is highly constrained, with use of the Hamilton--Jacobi equations. In multi-field holographic realizations of inflation, fields additional to the inflaton cannot display underdamped oscillations (that is, their wavefunctions contain no oscillatory phases independent of the momenta). We show that this result is exact, independent of the number of fields, the field space geometry and the shape of the inflationary trajectory followed in multi-field space. In the specific case where the multi-field trajectory is a straight line or confined to a plane, it can be understood as the existence of an upper bound on the dynamical masses $m$ of extra fields of the form $m leq 3 H / 2$ up to slow roll corrections. This bound corresponds to the analytic continuation of the well known Breitenlohner--Freedman bound found in AdS spacetimes in the case when the masses are approximately constant. The absence of underdamped oscillations implies that a detection of cosmological collider oscillatory patterns in the non-Gaussian bispectrum would not only rule out single field inflation, but also holographic inflation or any inflationary model based on the Hamilton--Jacobi equations. Hence, future observations have the potential to exclude, at once, an entire class of inflationary theories, regardless of the details involved in their model building.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا