ترغب بنشر مسار تعليمي؟ اضغط هنا

Enabling Data Diversity: Efficient Automatic Augmentation via Regularized Adversarial Training

174   0   0.0 ( 0 )
 نشر من قبل Yunhe Gao
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Data augmentation has proved extremely useful by increasing training data variance to alleviate overfitting and improve deep neural networks generalization performance. In medical image analysis, a well-designed augmentation policy usually requires much expert knowledge and is difficult to generalize to multiple tasks due to the vast discrepancies among pixel intensities, image appearances, and object shapes in different medical tasks. To automate medical data augmentation, we propose a regularized adversarial training framework via two min-max objectives and three differentiable augmentation models covering affine transformation, deformation, and appearance changes. Our method is more automatic and efficient than previous automatic augmentation methods, which still rely on pre-defined operations with human-specified ranges and costly bi-level optimization. Extensive experiments demonstrated that our approach, with less training overhead, achieves superior performance over state-of-the-art auto-augmentation methods on both tasks of 2D skin cancer classification and 3D organs-at-risk segmentation.



قيم البحث

اقرأ أيضاً

Recent successes in Generative Adversarial Networks (GAN) have affirmed the importance of using more data in GAN training. Yet it is expensive to collect data in many domains such as medical applications. Data Augmentation (DA) has been applied in th ese applications. In this work, we first argue that the classical DA approach could mislead the generator to learn the distribution of the augmented data, which could be different from that of the original data. We then propose a principled framework, termed Data Augmentation Optimized for GAN (DAG), to enable the use of augmented data in GAN training to improve the learning of the original distribution. We provide theoretical analysis to show that using our proposed DAG aligns with the original GAN in minimizing the Jensen-Shannon (JS) divergence between the original distribution and model distribution. Importantly, the proposed DAG effectively leverages the augmented data to improve the learning of discriminator and generator. We conduct experiments to apply DAG to different GAN models: unconditional GAN, conditional GAN, self-supervised GAN and CycleGAN using datasets of natural images and medical images. The results show that DAG achieves consistent and considerable improvements across these models. Furthermore, when DAG is used in some GAN models, the system establishes state-of-the-art Frechet Inception Distance (FID) scores. Our code is available.
One of the biggest issues facing the use of machine learning in medical imaging is the lack of availability of large, labelled datasets. The annotation of medical images is not only expensive and time consuming but also highly dependent on the availa bility of expert observers. The limited amount of training data can inhibit the performance of supervised machine learning algorithms which often need very large quantities of data on which to train to avoid overfitting. So far, much effort has been directed at extracting as much information as possible from what data is available. Generative Adversarial Networks (GANs) offer a novel way to unlock additional information from a dataset by generating synthetic samples with the appearance of real images. This paper demonstrates the feasibility of introducing GAN derived synthetic data to the training datasets in two brain segmentation tasks, leading to improvements in Dice Similarity Coefficient (DSC) of between 1 and 5 percentage points under different conditions, with the strongest effects seen fewer than ten training image stacks are available.
Adversarial regularization can improve model generalization in many natural language processing tasks. However, conventional approaches are computationally expensive since they need to generate a perturbation for each sample in each epoch. We propose a new adversarial regularization method ARCH (adversarial regularization with caching), where perturbations are generated and cached once every several epochs. As caching all the perturbations imposes memory usage concerns, we adopt a K-nearest neighbors-based strategy to tackle this issue. The strategy only requires caching a small amount of perturbations, without introducing additional training time. We evaluate our proposed method on a set of neural machine translation and natural language understanding tasks. We observe that ARCH significantly eases the computational burden (saves up to 70% of computational time in comparison with conventional approaches). More surprisingly, by reducing the variance of stochastic gradients, ARCH produces a notably better (in most of the tasks) or comparable model generalization. Our code is publicly available.
Adversarial training suffers from robust overfitting, a phenomenon where the robust test accuracy starts to decrease during training. In this paper, we focus on both heuristics-driven and data-driven augmentations as a means to reduce robust overfitt ing. First, we demonstrate that, contrary to previous findings, when combined with model weight averaging, data augmentation can significantly boost robust accuracy. Second, we explore how state-of-the-art generative models can be leveraged to artificially increase the size of the training set and further improve adversarial robustness. Finally, we evaluate our approach on CIFAR-10 against $ell_infty$ and $ell_2$ norm-bounded perturbations of size $epsilon = 8/255$ and $epsilon = 128/255$, respectively. We show large absolute improvements of +7.06% and +5.88% in robust accuracy compared to previous state-of-the-art methods. In particular, against $ell_infty$ norm-bounded perturbations of size $epsilon = 8/255$, our model reaches 64.20% robust accuracy without using any external data, beating most prior works that use external data.
Large scale image dataset and deep convolutional neural network (DCNN) are two primary driving forces for the rapid progress made in generic object recognition tasks in recent years. While lots of network architectures have been continuously designed to pursue lower error rates, few efforts are devoted to enlarge existing datasets due to high labeling cost and unfair comparison issues. In this paper, we aim to achieve lower error rate by augmenting existing datasets in an automatic manner. Our method leverages both Web and DCNN, where Web provides massive images with rich contextual information, and DCNN replaces human to automatically label images under guidance of Web contextual information. Experiments show our method can automatically scale up existing datasets significantly from billions web pages with high accuracy, and significantly improve the performance on object recognition tasks by using the automatically augmented datasets, which demonstrates that more supervisory information has been automatically gathered from the Web. Both the dataset and models trained on the dataset are made publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا