ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Dataset Augmentation

87   0   0.0 ( 0 )
 نشر من قبل Yalong Bai
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large scale image dataset and deep convolutional neural network (DCNN) are two primary driving forces for the rapid progress made in generic object recognition tasks in recent years. While lots of network architectures have been continuously designed to pursue lower error rates, few efforts are devoted to enlarge existing datasets due to high labeling cost and unfair comparison issues. In this paper, we aim to achieve lower error rate by augmenting existing datasets in an automatic manner. Our method leverages both Web and DCNN, where Web provides massive images with rich contextual information, and DCNN replaces human to automatically label images under guidance of Web contextual information. Experiments show our method can automatically scale up existing datasets significantly from billions web pages with high accuracy, and significantly improve the performance on object recognition tasks by using the automatically augmented datasets, which demonstrates that more supervisory information has been automatically gathered from the Web. Both the dataset and models trained on the dataset are made publicly available.



قيم البحث

اقرأ أيضاً

We propose Scale-aware AutoAug to learn data augmentation policies for object detection. We define a new scale-aware search space, where both image- and box-level augmentations are designed for maintaining scale invariance. Upon this search space, we propose a new search metric, termed Pareto Scale Balance, to facilitate search with high efficiency. In experiments, Scale-aware AutoAug yields significant and consistent improvement on various object detectors (e.g., RetinaNet, Faster R-CNN, Mask R-CNN, and FCOS), even compared with strong multi-scale training baselines. Our searched augmentation policies are transferable to other datasets and box-level tasks beyond object detection (e.g., instance segmentation and keypoint estimation) to improve performance. The search cost is much less than previous automated augmentation approaches for object detection. It is notable that our searched policies have meaningful patterns, which intuitively provide valuable insight for human data augmentation design. Code and models will be available at https://github.com/Jia-Research-Lab/SA-AutoAug.
The performance of modern face recognition systems is a function of the dataset on which they are trained. Most datasets are largely biased toward near-frontal views with benign lighting conditions, negatively effecting recognition performance on ima ges that do not meet these criteria. The proposed approach demonstrates how a baseline training set can be augmented to increase pose and lighting variability using semi-synthetic images with simulated pose and lighting conditions. The semi-synthetic images are generated using a fast and robust 3-d shape estimation and rendering pipeline which includes the full head and background. Various methods of incorporating the semi-synthetic renderings into the training procedure of a state of the art deep neural network-based recognition system without modifying the structure of the network itself are investigated. Quantitative results are presented on the challenging IJB-A identification dataset using a state of the art recognition pipeline as a baseline.
Data augmentation has proved extremely useful by increasing training data variance to alleviate overfitting and improve deep neural networks generalization performance. In medical image analysis, a well-designed augmentation policy usually requires m uch expert knowledge and is difficult to generalize to multiple tasks due to the vast discrepancies among pixel intensities, image appearances, and object shapes in different medical tasks. To automate medical data augmentation, we propose a regularized adversarial training framework via two min-max objectives and three differentiable augmentation models covering affine transformation, deformation, and appearance changes. Our method is more automatic and efficient than previous automatic augmentation methods, which still rely on pre-defined operations with human-specified ranges and costly bi-level optimization. Extensive experiments demonstrated that our approach, with less training overhead, achieves superior performance over state-of-the-art auto-augmentation methods on both tasks of 2D skin cancer classification and 3D organs-at-risk segmentation.
Automatic photo cropping is an important tool for improving visual quality of digital photos without resorting to tedious manual selection. Traditionally, photo cropping is accomplished by determining the best proposal window through visual quality a ssessment or saliency detection. In essence, the performance of an image cropper highly depends on the ability to correctly rank a number of visually similar proposal windows. Despite the ranking nature of automatic photo cropping, little attention has been paid to learning-to-rank algorithms in tackling such a problem. In this work, we conduct an extensive study on traditional approaches as well as ranking-based croppers trained on various image features. In addition, a new dataset consisting of high quality cropping and pairwise ranking annotations is presented to evaluate the performance of various baselines. The experimental results on the new dataset provide useful insights into the design of better photo cropping algorithms.
83 - Weijun Tan , Hongwei Guo 2021
We present an automatic COVID1-19 diagnosis framework from lung CT images. The focus is on signal processing and classification on small datasets with efforts putting into exploring data preparation and augmentation to improve the generalization capa bility of the 2D CNN classification models. We propose a unique and effective data augmentation method using multiple Hounsfield Unit (HU) normalization windows. In addition, the original slice image is cropped to exclude background, and a filter is applied to filter out closed-lung images. For the classification network, we choose to use 2D Densenet and Xception with the feature pyramid network (FPN). To further improve the classification accuracy, an ensemble of multiple CNN models and HU windows is used. On the training/validation dataset, we achieve a patient classification accuracy of 93.39%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا