ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Adversarial Robustness of Visual Transformers

97   0   0.0 ( 0 )
 نشر من قبل Rulin Shao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Following the success in advancing natural language processing and understanding, transformers are expected to bring revolutionary changes to computer vision. This work provides the first and comprehensive study on the robustness of vision transformers (ViTs) against adversarial perturbations. Tested on various white-box and transfer attack settings, we find that ViTs possess better adversarial robustness when compared with convolutional neural networks (CNNs). We summarize the following main observations contributing to the improved robustness of ViTs: 1) Features learned by ViTs contain less low-level information and are more generalizable, which contributes to superior robustness against adversarial perturbations. 2) Introducing convolutional or tokens-to-token blocks for learning low-level features in ViTs can improve classification accuracy but at the cost of adversarial robustness. 3) Increasing the proportion of transformers in the model structure (when the model consists of both transformer and CNN blocks) leads to better robustness. But for a pure transformer model, simply increasing the size or adding layers cannot guarantee a similar effect. 4) Pre-training on larger datasets does not significantly improve adversarial robustness though it is critical for training ViTs. 5) Adversarial training is also applicable to ViT for training robust models. Furthermore, feature visualization and frequency analysis are conducted for explanation. The results show that ViTs are less sensitive to high-frequency perturbations than CNNs and there is a high correlation between how well the model learns low-level features and its robustness against different frequency-based perturbations.

قيم البحث

اقرأ أيضاً

Deep Convolutional Neural Networks (CNNs) have long been the architecture of choice for computer vision tasks. Recently, Transformer-based architectures like Vision Transformer (ViT) have matched or even surpassed ResNets for image classification. Ho wever, details of the Transformer architecture -- such as the use of non-overlapping patches -- lead one to wonder whether these networks are as robust. In this paper, we perform an extensive study of a variety of different measures of robustness of ViT models and compare the findings to ResNet baselines. We investigate robustness to input perturbations as well as robustness to model perturbations. We find that when pre-trained with a sufficient amount of data, ViT models are at least as robust as the ResNet counterparts on a broad range of perturbations. We also find that Transformers are robust to the removal of almost any single layer, and that while activations from later layers are highly correlated with each other, they nevertheless play an important role in classification.
We present BoTNet, a conceptually simple yet powerful backbone architecture that incorporates self-attention for multiple computer vision tasks including image classification, object detection and instance segmentation. By just replacing the spatial convolutions with global self-attention in the final three bottleneck blocks of a ResNet and no other changes, our approach improves upon the baselines significantly on instance segmentation and object detection while also reducing the parameters, with minimal overhead in latency. Through the design of BoTNet, we also point out how ResNet bottleneck blocks with self-attention can be viewed as Transformer blocks. Without any bells and whistles, BoTNet achieves 44.4% Mask AP and 49.7% Box AP on the COCO Instance Segmentation benchmark using the Mask R-CNN framework; surpassing the previous best published single model and single scale results of ResNeSt evaluated on the COCO validation set. Finally, we present a simple adaptation of the BoTNet design for image classification, resulting in models that achieve a strong performance of 84.7% top-1 accuracy on the ImageNet benchmark while being up to 1.64x faster in compute time than the popular EfficientNet models on TPU-v3 hardware. We hope our simple and effective approach will serve as a strong baseline for future research in self-attention models for vision
Attention-based networks have achieved state-of-the-art performance in many computer vision tasks, such as image classification. Unlike Convolutional Neural Network (CNN), the major part of the vanilla Vision Transformer (ViT) is the attention block that brings the power of mimicking the global context of the input image. This power is data hunger and hence, the larger the training data the better the performance. To overcome this limitation, many ViT-based networks, or hybrid-ViT, have been proposed to include local context during the training. The robustness of ViTs and its variants against adversarial attacks has not been widely invested in the literature. Some robustness attributes were revealed in few previous works and hence, more insight robustness attributes are yet unrevealed. This work studies the robustness of ViT variants 1) against different $L_p$-based adversarial attacks in comparison with CNNs and 2) under Adversarial Examples (AEs) after applying preprocessing defense methods. To that end, we run a set of experiments on 1000 images from ImageNet-1k and then provide an analysis that reveals that vanilla ViT or hybrid-ViT are more robust than CNNs. For instance, we found that 1) Vanilla ViTs or hybrid-ViTs are more robust than CNNs under $L_0$, $L_1$, $L_2$, $L_infty$-based, and Color Channel Perturbations (CCP) attacks. 2) Vanilla ViTs are not responding to preprocessing defenses that mainly reduce the high frequency components while, hybrid-ViTs are more responsive to such defense. 3) CCP can be used as a preprocessing defense and larger ViT variants are found to be more responsive than other models. Furthermore, feature maps, attention maps, and Grad-CAM visualization jointly with image quality measures, and perturbations energy spectrum are provided for an insight understanding of attention-based models.
We introduce the GANformer, a novel and efficient type of transformer, and explore it for the task of visual generative modeling. The network employs a bipartite structure that enables long-range interactions across the image, while maintaining compu tation of linear efficiency, that can readily scale to high-resolution synthesis. It iteratively propagates information from a set of latent variables to the evolving visual features and vice versa, to support the refinement of each in light of the other and encourage the emergence of compositional representations of objects and scenes. In contrast to the classic transformer architecture, it utilizes multiplicative integration that allows flexible region-based modulation, and can thus be seen as a generalization of the successful StyleGAN network. We demonstrate the models strength and robustness through a careful evaluation over a range of datasets, from simulated multi-object environments to rich real-world indoor and outdoor scenes, showing it achieves state-of-the-art results in terms of image quality and diversity, while enjoying fast learning and better data-efficiency. Further qualitative and quantitative experiments offer us an insight into the models inner workings, revealing improved interpretability and stronger disentanglement, and illustrating the benefits and efficacy of our approach. An implementation of the model is available at https://github.com/dorarad/gansformer.
With the tremendous advances in the architecture and scale of convolutional neural networks (CNNs) over the past few decades, they can easily reach or even exceed the performance of humans in certain tasks. However, a recently discovered shortcoming of CNNs is that they are vulnerable to adversarial attacks. Although the adversarial robustness of CNNs can be improved by adversarial training, there is a trade-off between standard accuracy and adversarial robustness. From the neural architecture perspective, this paper aims to improve the adversarial robustness of the backbone CNNs that have a satisfactory accuracy. Under a minimal computational overhead, the introduction of a dilation architecture is expected to be friendly with the standard performance of the backbone CNN while pursuing adversarial robustness. Theoretical analyses on the standard and adversarial error bounds naturally motivate the proposed neural architecture dilation algorithm. Experimental results on real-world datasets and benchmark neural networks demonstrate the effectiveness of the proposed algorithm to balance the accuracy and adversarial robustness.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا