ﻻ يوجد ملخص باللغة العربية
We provide a construction for categorical representation learning and introduce the foundations of $textit{categorifier}$. The central theme in representation learning is the idea of $textbf{everything to vector}$. Every object in a dataset $mathcal{S}$ can be represented as a vector in $mathbb{R}^n$ by an $textit{encoding map}$ $E: mathcal{O}bj(mathcal{S})tomathbb{R}^n$. More importantly, every morphism can be represented as a matrix $E: mathcal{H}om(mathcal{S})tomathbb{R}^{n}_{n}$. The encoding map $E$ is generally modeled by a $textit{deep neural network}$. The goal of representation learning is to design appropriate tasks on the dataset to train the encoding map (assuming that an encoding is optimal if it universally optimizes the performance on various tasks). However, the latter is still a $textit{set-theoretic}$ approach. The goal of the current article is to promote the representation learning to a new level via a $textit{category-theoretic}$ approach. As a proof of concept, we provide an example of a text translator equipped with our technology, showing that our categorical learning model outperforms the current deep learning models by 17 times. The content of the current article is part of the recent US patent proposal (patent application number: 63110906).
Gradient-based meta-learning has proven to be highly effective at learning model initializations, representations, and update rules that allow fast adaptation from a few samples. The core idea behind these approaches is to use fast adaptation and gen
We propose a new learning paradigm called Deep Memory. It has the potential to completely revolutionize the Machine Learning field. Surprisingly, this paradigm has not been reinvented yet, unlike Deep Learning. At the core of this approach is the tex
The Lottery Ticket Hypothesis is a conjecture that every large neural network contains a subnetwork that, when trained in isolation, achieves comparable performance to the large network. An even stronger conjecture has been proven recently: Every suf
We investigate a general formulation for clustering and transductive few-shot learning, which integrates prototype-based objectives, Laplacian regularization and supervision constraints from a few labeled data points. We propose a concave-convex rela
Region proposal mechanisms are essential for existing deep learning approaches to object detection in images. Although they can generally achieve a good detection performance under normal circumstances, their recall in a scene with extreme cases is u