ﻻ يوجد ملخص باللغة العربية
Thermodynamics is one of the oldest and well-established branches of physics that sets boundaries to what can possibly be achieved in macroscopic systems. While it started as a purely classical theory, it was realized in the early days of quantum mechanics that large quantum devices, such as masers or lasers, can be treated with the thermodynamic formalism. Remarkable progress has been made recently in the miniaturization of heat engines all the way to the single Brownian particle as well as to a single atom. However, despite several theoretical proposals, the implementation of heat machines in the fully quantum regime remains a challenge. Here, we report an experimental realization of a quantum absorption refrigerator in a system of three trapped ions, with three of its normal modes of motion coupled by a trilinear Hamiltonian such that heat transfer between two modes refrigerates the third. We investigate the dynamics and steady-state properties of the refrigerator and compare its cooling capability when only thermal states are involved to the case when squeezing is employed as a quantum resource. We also study the performance of such a refrigerator in the single shot regime, and demonstrate cooling below both the steady-state energy and the benchmark predicted by the classical thermodynamics treatment.
A system of harmonic oscillators coupled via nonlinear interaction is a fundamental model in many branches of physics, from biophysics to electronics and condensed matter physics. In quantum optics, weak nonlinear interaction between light modes has
Cold atoms and ions exhibit unparalleled performance in frequency metrology epitomized in the atomic clock. More recently, such atomic systems have been used to implement programmable quantum computers and simulators with highest reported operational
Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource, beyond the role as a mediator for entangling quantum operations on internal degrees of freedom, because of the large available Hilbert s
Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can
Microwave near-field quantum control of spin and motional degrees of freedom of 25Mg+ ions can be used to generate two-ion entanglement, as recently demonstrated in Ospelkaus et al. [Nature 476, 181 (2011)]. Here, we describe additional details of th