ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics-informed Learning for Identification and State Reconstruction of Traffic Density

233   0   0.0 ( 0 )
 نشر من قبل Matthieu Barreau
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper deals with traffic density reconstruction using measurements from Probe Vehicles (PVs). The main difficulty arises when considering a low penetration rate, meaning that the number of PVs is small compared to the total number of vehicles on the road. Moreover, the formulation assumes noisy measurements and a partially unknown first-order model. All these considerations make the use of machine learning to reconstruct the state the only applicable solution. We first investigate how the identification and reconstruction processes can be merged and how a sparse dataset can still enable a good identification. Secondly, we propose a pre-training procedure that helps the hyperparameter tuning, preventing the gradient descent algorithm from getting stuck at saddle points. Examples using numerical simulations and the SUMO traffic simulator show that the reconstructions are close to the real density in all cases.

قيم البحث

اقرأ أيضاً

Traffic state estimation (TSE), which reconstructs the traffic variables (e.g., density) on road segments using partially observed data, plays an important role on efficient traffic control and operation that intelligent transportation systems (ITS) need to provide to people. Over decades, TSE approaches bifurcate into two main categories, model-driven approaches and data-driven approaches. However, each of them has limitations: the former highly relies on existing physical traffic flow models, such as Lighthill-Whitham-Richards (LWR) models, which may only capture limited dynamics of real-world traffic, resulting in low-quality estimation, while the latter requires massive data in order to perform accurate and generalizable estimation. To mitigate the limitations, this paper introduces a physics-informed deep learning (PIDL) framework to efficiently conduct high-quality TSE with small amounts of observed data. PIDL contains both model-driven and data-driven components, making possible the integration of the strong points of both approaches while overcoming the shortcomings of either. This paper focuses on highway TSE with observed data from loop detectors, using traffic density as the traffic variables. We demonstrate the use of PIDL to solve (with data from loop detectors) two popular physical traffic flow models, i.e., Greenshields-based LWR and three-parameter-based LWR, and discover the model parameters. We then evaluate the PIDL-based highway TSE using the Next Generation SIMulation (NGSIM) dataset. The experimental results show the advantages of the PIDL-based approach in terms of estimation accuracy and data efficiency over advanced baseline TSE methods.
Traffic state estimation (TSE) bifurcates into two main categories, model-driven and data-driven (e.g., machine learning, ML) approaches, while each suffers from either deficient physics or small data. To mitigate these limitations, recent studies in troduced hybrid methods, such as physics-informed deep learning (PIDL), which contains both model-driven and data-driven components. This paper contributes an improved paradigm, called physics-informed deep learning with a fundamental diagram learner (PIDL+FDL), which integrates ML terms into the model-driven component to learn a functional form of a fundamental diagram (FD), i.e., a mapping from traffic density to flow or velocity. The proposed PIDL+FDL has the advantages of performing the TSE learning, model parameter discovery, and FD discovery simultaneously. This paper focuses on highway TSE with observed data from loop detectors, using traffic density or velocity as traffic variables. We demonstrate the use of PIDL+FDL to solve popular first-order and second-order traffic flow models and reconstruct the FD relation as well as model parameters that are outside the FD term. We then evaluate the PIDL+FDL-based TSE using the Next Generation SIMulation (NGSIM) dataset. The experimental results show the superiority of the PIDL+FDL in terms of improved estimation accuracy and data efficiency over advanced baseline TSE methods, and additionally, the capacity to properly learn the unknown underlying FD relation.
We apply Physics-Informed Neural Networks (PINNs) for solving identification problems of nonhomogeneous materials. We focus on the problem with a background in elasticity imaging, where one seeks to identify the nonhomogeneous mechanical properties o f soft tissue based on the full-field displacement measurements under quasi-static loading. In our model, we apply two independent neural networks, one for approximating the solution of the corresponding forward problem, and the other for approximating the unknown material parameter field. As a proof of concept, we validate our model on a prototypical plane strain problem for incompressible hyperelastic tissue. The results show that the PINNs are effective in accurately recovering the unknown distribution of mechanical properties. By employing two neural networks in our model, we extend the capability of material identification of PINNs to include nonhomogeneous material parameter fields, which enables more flexibility of PINNs in representing complex material properties.
101 - Fangzheng Sun , Yang Liu , Hao Sun 2021
Dynamical systems are typically governed by a set of linear/nonlinear differential equations. Distilling the analytical form of these equations from very limited data remains intractable in many disciplines such as physics, biology, climate science, engineering and social science. To address this fundamental challenge, we propose a novel Physics-informed Spline Learning (PiSL) framework to discover parsimonious governing equations for nonlinear dynamics, based on sparsely sampled noisy data. The key concept is to (1) leverage splines to interpolate locally the dynamics, perform analytical differentiation and build the library of candidate terms, (2) employ sparse representation of the governing equations, and (3) use the physics residual in turn to inform the spline learning. The synergy between splines and discovered underlying physics leads to the robust capacity of dealing with high-level data scarcity and noise. A hybrid sparsity-promoting alternating direction optimization strategy is developed for systematically pruning the sparse coefficients that form the structure and explicit expression of the governing equations. The efficacy and superiority of the proposed method have been demonstrated by multiple well-known nonlinear dynamical systems, in comparison with two state-of-the-art methods.
Temperature monitoring during the life time of heat source components in engineering systems becomes essential to guarantee the normal work and the working life of these components. However, prior methods, which mainly use the interpolate estimation to reconstruct the temperature field from limited monitoring points, require large amounts of temperature tensors for an accurate estimation. This may decrease the availability and reliability of the system and sharply increase the monitoring cost. To solve this problem, this work develops a novel physics-informed deep reversible regression models for temperature field reconstruction of heat-source systems (TFR-HSS), which can better reconstruct the temperature field with limited monitoring points unsupervisedly. First, we define the TFR-HSS task mathematically, and numerically model the task, and hence transform the task as an image-to-image regression problem. Then this work develops the deep reversible regression model which can better learn the physical information, especially over the boundary. Finally, considering the physical characteristics of heat conduction as well as the boundary conditions, this work proposes the physics-informed reconstruction loss including four training losses and jointly learns the deep surrogate model with these losses unsupervisedly. Experimental studies have conducted over typical two-dimensional heat-source systems to demonstrate the effectiveness of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا