ﻻ يوجد ملخص باللغة العربية
Dynamical systems are typically governed by a set of linear/nonlinear differential equations. Distilling the analytical form of these equations from very limited data remains intractable in many disciplines such as physics, biology, climate science, engineering and social science. To address this fundamental challenge, we propose a novel Physics-informed Spline Learning (PiSL) framework to discover parsimonious governing equations for nonlinear dynamics, based on sparsely sampled noisy data. The key concept is to (1) leverage splines to interpolate locally the dynamics, perform analytical differentiation and build the library of candidate terms, (2) employ sparse representation of the governing equations, and (3) use the physics residual in turn to inform the spline learning. The synergy between splines and discovered underlying physics leads to the robust capacity of dealing with high-level data scarcity and noise. A hybrid sparsity-promoting alternating direction optimization strategy is developed for systematically pruning the sparse coefficients that form the structure and explicit expression of the governing equations. The efficacy and superiority of the proposed method have been demonstrated by multiple well-known nonlinear dynamical systems, in comparison with two state-of-the-art methods.
Partial Differential Equations (PDEs) are notoriously difficult to solve. In general, closed-form solutions are not available and numerical approximation schemes are computationally expensive. In this paper, we propose to approach the solution of PDE
Traffic state estimation (TSE) bifurcates into two main categories, model-driven and data-driven (e.g., machine learning, ML) approaches, while each suffers from either deficient physics or small data. To mitigate these limitations, recent studies in
Traffic state estimation (TSE), which reconstructs the traffic variables (e.g., density) on road segments using partially observed data, plays an important role on efficient traffic control and operation that intelligent transportation systems (ITS)
A physics-informed neural network (PINN) that combines deep learning with physics is studied to solve the nonlinear Schrodinger equation for learning nonlinear dynamics in fiber optics. We carry out a systematic investigation and comprehensive verifi
Stochastic differential equations (SDEs) are used to describe a wide variety of complex stochastic dynamical systems. Learning the hidden physics within SDEs is crucial for unraveling fundamental understanding of the stochastic and nonlinear behavior