ﻻ يوجد ملخص باللغة العربية
The field of two-dimensional topological semimetals, which emerged at the intersection of two-dimensional materials and topological materials, have been rapidly developing in recent years. In this article, we briefly review the progress in this field. Our focus is on the basic concepts and notions, in order to convey a coherent overview of the field. Some material examples are discussed to illustrate the concepts. We discuss the outstanding problems in the field that need to be addressed in future research.
Graphene is famous for being a host of 2D Dirac fermions. However, spin-orbit coupling introduces a small gap, so that graphene is formally a quantum spin hall insulator. Here we present symmetry-protected 2D Dirac semimetals, which feature Dirac con
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different wi
Owing to the natural compatibility with current semiconductor industry, silicon allotropes with diverse structural and electronic properties provide promising platforms for the next-generation Si-based devices. After screening 230 all-silicon crystal
Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a conden
Weyl semimetals are conductors whose low-energy bulk excitations are Weyl fermions, whereas their surfaces possess metallic Fermi arc surface states. These Fermi arc surface states are protected by a topological invariant associated with the bulk ele