ﻻ يوجد ملخص باللغة العربية
The transition region between the North Equatorial Band (NEBn) and North Tropical Zone (NTrZ) in Jupiter is home to convective storms, systems of cyclones and anticyclones and atmospheric waves. A large anticyclone formed in the year 2006 at planetographic latitude 19N and persists since then after a complex dynamic history, being possibly the third longest-lived oval in the planet after Jupiters Great Red Spot and oval BA. This anticyclone has experienced close interactions with other ovals, merging with another oval in February 2013; it has also experienced color changes, from white to red (September 2013). The oval survived the effects of the closely located North Temperate Belt Disturbance, which occurred in October 2016 and fully covered the oval, rendering it unobservable for a short time. When it became visible again at its expected longitude from its previous longitudinal track, it reappeared as a white large oval keeping this color and the same morphology since 2017 at least until the onset of the new convective disturbance in Jupiters North Temperate Belt in August 2020. Here we describe the historic evolution of the properties of this oval. We use JunoCam and Hubble Space Telescope (HST) images to measure its size and its internal rotation. We also used HST and PlanetCam-UPV/EHU multi-wavelength observations to characterize its color changes and Junocam images to unveil its detailed structure. The color and the altitude-opacity indices show that the oval is higher and has redder clouds than its environment but has lower cloud tops than other large ovals like the GRS, and it is less red than the GRS and oval BA. We show that in spite of the dramatic environmental changes suffered by the oval during all these years, its main characteristics are stable in time and therefore must be related with the atmospheric dynamics below the observable cloud decks.
We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the
Juno Mission to Jupiter has found closely-packed cyclones at the planets two poles. The observation that these cyclones coexist in very confined space, with outer rims almost touching each other but without merging, poses a big puzzle. In this work,
Torques from a mutually inclined perturber can change a transiting planets impact parameter, resulting in variations in the transit shape and duration. Detection of and upper limits on changes in impact parameter yield valuable constraints on a plane
The unexpectedly large radii of hot Jupiters are a longstanding mystery whose solution will provide important insights into their interior physics. Many potential solutions have been suggested, which make diverse predictions about the details of infl
The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we