ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep, Closely-Packed, Long-Lived Cyclones on Jupiters Poles

103   0   0.0 ( 0 )
 نشر من قبل Tao Cai
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Juno Mission to Jupiter has found closely-packed cyclones at the planets two poles. The observation that these cyclones coexist in very confined space, with outer rims almost touching each other but without merging, poses a big puzzle. In this work, we present numerical calculations showing that convectively sustained, closely-packed cyclones can form and survive without merging for a very long time in polar region of a deep rotating convection zone (for thousands of planetary rotation periods). Through an idealized application of the inertial stability criterion for axisymmetric circulations, it is found that the large Coriolis parameter near the pole plays a crucial role in allowing the cyclones to be packed closely.

قيم البحث

اقرأ أيضاً

Planetary-scale waves are thought to play a role in powering the yet-unexplained atmospheric superrotation of Venus. Puzzlingly, while Kelvin, Rossby and stationary waves manifest at the upper clouds (65--70 km), no planetary-scale waves or stationar y patterns have been reported in the intervening level of the lower clouds (48--55 km), although the latter are probably Lee waves. Using observations by the Akatsuki orbiter and ground-based telescopes, we show that the lower clouds follow a regular cycle punctuated between 30$^{circ}$N--40$^{circ}$S by a sharp discontinuity or disruption with potential implications to Venuss general circulation and thermal structure. This disruption exhibits a westward rotation period of $sim$4.9 days faster than winds at this level ($sim$6-day period), alters clouds properties and aerosols, and remains coherent during weeks. Past observations reveal its recurrent nature since at least 1983, and numerical simulations show that a nonlinear Kelvin wave reproduces many of its properties.
The climate and circulation of a terrestrial planet are governed by, among other things, the distance to its host star, its size, rotation rate, obliquity, atmospheric composition and gravity. Here we explore the effects of the last of these, the New tonian gravitational acceleration, on its atmosphere and climate. We first demonstrate that if the atmosphere obeys the hydrostatic primitive equations, which are a very good approximation for most terrestrial atmospheres, and if the radiative forcing is unaltered, changes in gravity have no effect at all on the circulation except for a vertical rescaling. That is to say, the effects of gravity may be completely scaled away and the circulation is unaltered. However, if the atmosphere contains a dilute condensible that is radiatively active, such as water or methane, then an increase in gravity will generally lead to a cooling of the planet because the total path length of the condensible will be reduced as gravity increases, leading to a reduction in the greenhouse effect. Furthermore, the specific humidity will decrease, leading to changes in the moist adiabatic lapse rate, in the equator-to-pole heat transport, and in the surface energy balance because of changes in the sensible and latent fluxes. These effects are all demonstrated both by theoretical arguments and by numerical simulations with moist and dry general circulation models.
Context. Atmospheric superrotating flows at the equator are an almost ubiquitous result of simulations of hot Jupiters, and a theory explaining how this zonally coherent flow reaches an equilibrium has been developed in the literature. However, this understanding relies on the existence of either an initial superrotating or a sheared flow, coupled with a slow evolution such that a linear steady state can be reached. Aims. A consistent physical understanding of superrotation is needed for arbitrary drag and radiative timescales, and the relevance of considering linear steady states needs to be assessed. Methods. We obtain an analytical expression for the structure, frequency and decay rate of propagating waves in hot Jupiter atmospheres around a state at rest in the 2D shallow water beta plane limit. We solve this expression numerically and confirm the robustness of our results with a 3D linear wave algorithm. We then compare with 3D simulations of hot Jupiter atmospheres and study the non linear momentum fluxes. Results. We show that under strong day night heating the dynamics does not transit through a linear steady state when starting from an initial atmosphere in solid body rotation. We further show that non linear effects favour the initial spin up of superrotation and that the acceleration due to the vertical component of the eddy momentum flux is critical to the initial development of superrotation. Conclusions. Overall, we describe the initial phases of the acceleration of superrotation, including consideration of differing radiative and drag timescales, and conclude that eddy-momentum driven superrotating equatorial jets are robust, physical phenomena in simulations of hot Jupiter atmospheres.
The macroturbulent atmospheric circulation of Earth-like planets mediates their equator-to-pole heat transport. For fast-rotating terrestrial planets, baroclinic instabilities in the mid-latitudes lead to turbulent eddies that act to transport heat p oleward. In this work, we derive a scaling theory for the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanet atmospheres. This theory is built on the work of Jansen & Ferrari (2013), and determines how unstable the atmosphere is to baroclinic instability (the baroclinic criticality) through a balance between the baroclinic eddy heat flux and radiative heating/cooling. We compare our scaling theory to General Circulation Model (GCM) simulations and find that the theoretical predictions for equator-to-pole temperature contrast and bulk lapse rate broadly agree with GCM experiments with varying rotation rate and surface pressure throughout the baroclincally unstable regime. Our theoretical results show that baroclinic instabilities are a strong control of heat transport in the atmospheres of Earth-like exoplanets, and our scalings can be used to estimate the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanets. These scalings can be tested by spectroscopic retrievals and full-phase light curves of terrestrial exoplanets with future space telescopes.
117 - Takahiro Hatano 2006
In order to understand the nature of friction in closely-packed granular materials, a discrete element simulation on granular layers subjected to isobaric plain shear is performed. It is found that the friction coefficient increases as the power of t he shear rate, the exponent of which does not depend on the material constants. Using a nondimensional parameter that is known as the inertial number, the power-law can be cast in a generalized form so that the friction coefficients at different confining pressures collapse on the same curve. We show that the volume fraction also obeys a power-law.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا