ﻻ يوجد ملخص باللغة العربية
Deep Neural Networks (DNNs) have achieved remarkable performance on a variety of applications but are extremely vulnerable to adversarial perturbation. To address this issue, various defense methods have been proposed to enhance model robustness. Unfortunately, the most representative and promising methods, such as adversarial training and its variants, usually degrade model accuracy on benign samples, limiting practical utility. This indicates that it is difficult to extract both robust and accurate features using a single network under certain conditions, such as limited training data, resulting in a trade-off between accuracy and robustness. To tackle this problem, we propose an Adversarial Feature Stacking (AFS) model that can jointly take advantage of features with varied levels of robustness and accuracy, thus significantly alleviating the aforementioned trade-off. Specifically, we adopt multiple networks adversarially trained with different perturbation budgets to extract either more robust features or more accurate features. These features are then fused by a learnable merger to give final predictions. We evaluate the AFS model on CIFAR-10 and CIFAR-100 datasets with strong adaptive attack methods, which significantly advances the state-of-the-art in terms of the trade-off. Without extra training data, the AFS model achieves a benign accuracy improvement of 6% on CIFAR-10 and 9% on CIFAR-100 with comparable or even stronger robustness than the state-of-the-art adversarial training methods. This work demonstrates the feasibility to obtain both accurate and robust models under the circumstances of limited training data.
Data augmentation has become a de facto component for training high-performance deep image classifiers, but its potential is under-explored for object detection. Noting that most state-of-the-art object detectors benefit from fine-tuning a pre-traine
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these
Recent studies reveal that Convolutional Neural Networks (CNNs) are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications. Many adversarial defense methods improve robustness at the cost of accuracy, rais
Most state-of-the-art action feature extractors involve differential operators, which act as highpass filters and tend to attenuate low frequency action information. This attenuation introduces bias to the resulting features and generates ill-conditi
Automated tagging of video advertisements has been a critical yet challenging problem, and it has drawn increasing interests in last years as its applications seem to be evident in many fields. Despite sustainable efforts have been made, the tagging