ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Feature Stacking for Accurate and Robust Predictions

121   0   0.0 ( 0 )
 نشر من قبل Faqiang Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Neural Networks (DNNs) have achieved remarkable performance on a variety of applications but are extremely vulnerable to adversarial perturbation. To address this issue, various defense methods have been proposed to enhance model robustness. Unfortunately, the most representative and promising methods, such as adversarial training and its variants, usually degrade model accuracy on benign samples, limiting practical utility. This indicates that it is difficult to extract both robust and accurate features using a single network under certain conditions, such as limited training data, resulting in a trade-off between accuracy and robustness. To tackle this problem, we propose an Adversarial Feature Stacking (AFS) model that can jointly take advantage of features with varied levels of robustness and accuracy, thus significantly alleviating the aforementioned trade-off. Specifically, we adopt multiple networks adversarially trained with different perturbation budgets to extract either more robust features or more accurate features. These features are then fused by a learnable merger to give final predictions. We evaluate the AFS model on CIFAR-10 and CIFAR-100 datasets with strong adaptive attack methods, which significantly advances the state-of-the-art in terms of the trade-off. Without extra training data, the AFS model achieves a benign accuracy improvement of 6% on CIFAR-10 and 9% on CIFAR-100 with comparable or even stronger robustness than the state-of-the-art adversarial training methods. This work demonstrates the feasibility to obtain both accurate and robust models under the circumstances of limited training data.



قيم البحث

اقرأ أيضاً

Data augmentation has become a de facto component for training high-performance deep image classifiers, but its potential is under-explored for object detection. Noting that most state-of-the-art object detectors benefit from fine-tuning a pre-traine d classifier, we first study how the classifiers gains from various data augmentations transfer to object detection. The results are discouraging; the gains diminish after fine-tuning in terms of either accuracy or robustness. This work instead augments the fine-tuning stage for object detectors by exploring adversarial examples, which can be viewed as a model-dependent data augmentation. Our method dynamically selects the stronger adversarial images sourced from a detectors classification and localization branches and evolves with the detector to ensure the augmentation policy stays current and relevant. This model-dependent augmentation generalizes to different object detectors better than AutoAugment, a model-agnostic augmentation policy searched based on one particular detector. Our approach boosts the performance of state-of-the-art EfficientDets by +1.1 mAP on the COCO object detection benchmark. It also improves the detectors robustness against natural distortions by +3.8 mAP and against domain shift by +1.3 mAP. Models are available at https://github.com/google/automl/tree/master/efficientdet/Det-AdvProp.md
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. Our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code is available at https://github.com/facebookresearch/ImageNet-Adversarial-Training.
Recent studies reveal that Convolutional Neural Networks (CNNs) are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications. Many adversarial defense methods improve robustness at the cost of accuracy, rais ing the contradiction between standard and adversarial accuracies. In this paper, we observe an interesting phenomenon that feature statistics change monotonically and smoothly w.r.t the rising of attacking strength. Based on this observation, we propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths. Our method is trained to automatically align features of arbitrary attacking strength. This is done by predicting a fusing weight in a dual-BN architecture. Unlike previous works that need to either retrain the model or manually tune a hyper-parameters for different attacking strengths, our method can deal with arbitrary attacking strengths with a single model without introducing any hyper-parameter. Importantly, our method improves the model robustness against adversarial samples without incurring much loss in standard accuracy. Experiments on CIFAR-10, SVHN, and tiny-ImageNet datasets demonstrate that our method outperforms the state-of-the-art under a wide range of attacking strengths.
Most state-of-the-art action feature extractors involve differential operators, which act as highpass filters and tend to attenuate low frequency action information. This attenuation introduces bias to the resulting features and generates ill-conditi oned feature matrices. The Gaussian Pyramid has been used as a feature enhancing technique that encodes scale-invariant characteristics into the feature space in an attempt to deal with this attenuation. However, at the core of the Gaussian Pyramid is a convolutional smoothing operation, which makes it incapable of generating new features at coarse scales. In order to address this problem, we propose a novel feature enhancing technique called Multi-skIp Feature Stacking (MIFS), which stacks features extracted using a family of differential filters parameterized with multiple time skips and encodes shift-invariance into the frequency space. MIFS compensates for information lost from using differential operators by recapturing information at coarse scales. This recaptured information allows us to match actions at different speeds and ranges of motion. We prove that MIFS enhances the learnability of differential-based features exponentially. The resulting feature matrices from MIFS have much smaller conditional numbers and variances than those from conventional methods. Experimental results show significantly improved performance on challenging action recognition and event detection tasks. Specifically, our method exceeds the state-of-the-arts on Hollywood2, UCF101 and UCF50 datasets and is comparable to state-of-the-arts on HMDB51 and Olympics Sports datasets. MIFS can also be used as a speedup strategy for feature extraction with minimal or no accuracy cost.
Automated tagging of video advertisements has been a critical yet challenging problem, and it has drawn increasing interests in last years as its applications seem to be evident in many fields. Despite sustainable efforts have been made, the tagging task is still suffered from several challenges, such as, efficiently feature fusion approach is desirable, but under-explored in previous studies. In this paper, we present our approach for Multimodal Video Ads Tagging in the 2021 Tencent Advertising Algorithm Competition. Specifically, we propose a novel multi-modal feature fusion framework, with the goal to combine complementary information from multiple modalities. This framework introduces stacking-based ensembling approach to reduce the influence of varying levels of noise and conflicts between different modalities. Thus, our framework can boost the performance of the tagging task, compared to previous methods. To empirically investigate the effectiveness and robustness of the proposed framework, we conduct extensive experiments on the challenge datasets. The obtained results suggest that our framework can significantly outperform related approaches and our method ranks as the 1st place on the final leaderboard, with a Global Average Precision (GAP) of 82.63%. To better promote the research in this field, we will release our code in the final version.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا