ترغب بنشر مسار تعليمي؟ اضغط هنا

Repairing Pronouns in Translation with BERT-Based Post-Editing

83   0   0.0 ( 0 )
 نشر من قبل Reid Pryzant
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Reid Pryzant




اسأل ChatGPT حول البحث

Pronouns are important determinants of a texts meaning but difficult to translate. This is because pronoun choice can depend on entities described in previous sentences, and in some languages pronouns may be dropped when the referent is inferrable from the context. These issues can lead Neural Machine Translation (NMT) systems to make critical errors on pronouns that impair intelligibility and even reinforce gender bias. We investigate the severity of this pronoun issue, showing that (1) in some domains, pronoun choice can account for more than half of a NMT systems errors, and (2) pronouns have a disproportionately large impact on perceived translation quality. We then investigate a possible solution: fine-tuning BERT on a pronoun prediction task using chunks of source-side sentences, then using the resulting classifier to repair the translations of an existing NMT model. We offer an initial case study of this approach for the Japanese-English language pair, observing that a small number of translations are significantly improved according to human evaluators.



قيم البحث

اقرأ أيضاً

Users of machine translation (MT) may want to ensure the use of specific lexical terminologies. While there exist techniques for incorporating terminology constraints during inference for MT, current APE approaches cannot ensure that they will appear in the final translation. In this paper, we present both autoregressive and non-autoregressive models for lexically constrained APE, demonstrating that our approach enables preservation of 95% of the terminologies and also improves translation quality on English-German benchmarks. Even when applied to lexically constrained MT output, our approach is able to improve preservation of the terminologies. However, we show that our models do not learn to copy constraints systematically and suggest a simple data augmentation technique that leads to improved performance and robustness.
We propose a simple method to align multilingual contextual embeddings as a post-pretraining step for improved zero-shot cross-lingual transferability of the pretrained models. Using parallel data, our method aligns embeddings on the word level throu gh the recently proposed Translation Language Modeling objective as well as on the sentence level via contrastive learning and random input shuffling. We also perform sentence-level code-switching with English when finetuning on downstream tasks. On XNLI, our best model (initialized from mBERT) improves over mBERT by 4.7% in the zero-shot setting and achieves comparable result to XLM for translate-train while using less than 18% of the same parallel data and 31% less model parameters. On MLQA, our model outperforms XLM-R_Base that has 57% more parameters than ours.
206 - Jinhua Zhu , Yingce Xia , Lijun Wu 2020
The recently proposed BERT has shown great power on a variety of natural language understanding tasks, such as text classification, reading comprehension, etc. However, how to effectively apply BERT to neural machine translation (NMT) lacks enough ex ploration. While BERT is more commonly used as fine-tuning instead of contextual embedding for downstream language understanding tasks, in NMT, our preliminary exploration of using BERT as contextual embedding is better than using for fine-tuning. This motivates us to think how to better leverage BERT for NMT along this direction. We propose a new algorithm named BERT-fused model, in which we first use BERT to extract representations for an input sequence, and then the representations are fused with each layer of the encoder and decoder of the NMT model through attention mechanisms. We conduct experiments on supervised (including sentence-level and document-level translations), semi-supervised and unsupervised machine translation, and achieve state-of-the-art results on seven benchmark datasets. Our code is available at url{https://github.com/bert-nmt/bert-nmt}.
Devising metrics to assess translation quality has always been at the core of machine translation (MT) research. Traditional automatic reference-based metrics, such as BLEU, have shown correlations with human judgements of adequacy and fluency and ha ve been paramount for the advancement of MT system development. Crowd-sourcing has popularised and enabled the scalability of metrics based on human judgements, such as subjective direct assessments (DA) of adequacy, that are believed to be more reliable than reference-based automatic metrics. Finally, task-based measurements, such as post-editing time, are expected to provide a more detailed evaluation of the usefulness of translations for a specific task. Therefore, while DA averages adequacy judgements to obtain an appraisal of (perceived) quality independently of the task, and reference-based automatic metrics try to objectively estimate quality also in a task-independent way, task-based metrics are measurements obtained either during or after performing a specific task. In this paper we argue that, although expensive, task-based measurements are the most reliable when estimating MT quality in a specific task; in our case, this task is post-editing. To that end, we report experiments on a dataset with newly-collected post-editing indicators and show their usefulness when estimating post-editing effort. Our results show that task-based metrics comparing machine-translated and post-edit
GPT-2 and BERT demonstrate the effectiveness of using pre-trained language models (LMs) on various natural language processing tasks. However, LM fine-tuning often suffers from catastrophic forgetting when applied to resource-rich tasks. In this work , we introduce a concerted training framework (method) that is the key to integrate the pre-trained LMs to neural machine translation (NMT). Our proposed Cnmt consists of three techniques: a) asymptotic distillation to ensure that the NMT model can retain the previous pre-trained knowledge; b) a dynamic switching gate to avoid catastrophic forgetting of pre-trained knowledge; and c) a strategy to adjust the learning paces according to a scheduled policy. Our experiments in machine translation show method gains of up to 3 BLEU score on the WMT14 English-German language pair which even surpasses the previous state-of-the-art pre-training aided NMT by 1.4 BLEU score. While for the large WMT14 English-French task with 40 millions of sentence-pairs, our base model still significantly improves upon the state-of-the-art Transformer big model by more than 1 BLEU score.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا