ترغب بنشر مسار تعليمي؟ اضغط هنا

Dips and eclipses in the X-ray binary Swift J1858.6-0814 observed with NICER

79   0   0.0 ( 0 )
 نشر من قبل Douglas Buisson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery of eclipses in the X-ray light curves of the X-ray binary Swift J1858.6-0814. From these, we find an orbital period of $P=76841.3_{-1.4}^{+1.3}$ s ($approx21.3$ hours) and an eclipse duration of $t_{rm ec}=4098_{-18}^{+17}$ s ($approx1.14$ hours). We also find several absorption dips during the pre-eclipse phase. From the eclipse duration to orbital period ratio, the inclination of the binary orbit is constrained to $i>70^circ$. The most likely range for the companion mass suggests that the inclination is likely to be closer to this value than $90^circ$. The eclipses are also consistent with earlier data, in which strong variability (flares) and the long orbital period prevent clear detection of the period or eclipses. We also find that the bright flares occurred preferentially in the post-eclipse phase of the orbit, likely due to increased thickness at the disc-accretion stream interface preventing flares being visible during the pre-eclipse phase. This supports the notion that variable obscuration is responsible for the unusually strong variability in Swift J1858.6-0814.



قيم البحث

اقرأ أيضاً

Swift J1858.6-0814 is a recently discovered X-ray binary notable for extremely strong variability (by factors $>100$ in soft X-rays) in its discovery state. We present the detection of five thermonuclear (Type I) X-ray bursts from Swift J1858.6-0814, implying that the compact object in the system is a neutron star. Some of the bursts show photospheric radius expansion, so their peak flux can be used to estimate the distance to the system. The peak luminosity, and hence distance, can depend on several system parameters; for the most likely values, a high inclination and a helium atmosphere, $D=12.8_{-0.6}^{+0.8}$ kpc, although systematic effects allow a conservative range of $9-18$ kpc. Before one burst, we detect a QPO at $9.6pm0.5$ mHz with a fractional rms amplitude of $2.2pm0.2$% ($0.5-10$ keV), likely due to marginally stable burning of helium; similar oscillations may be present before the other bursts but the light curves are not long enough to allow their detection. We also search for burst oscillations but do not detect any, with an upper limit in the best case of 15% fractional amplitude (over $1-8$ keV). Finally, we discuss the implications of the neutron star accretor and this distance on other inferences which have been made about the system. In particular, we find that Swift J1858.6-0814 was observed at super-Eddington luminosities at least during bright flares during the variable stage of its outburst.
We find soft X-ray emission lines from the X-ray binary Swift J1858.6-0814 in data from XMM-Newton-RGS: N VII, O VII and O VIII, as well as notable residuals short of a detection at Ne IX and other higher ionisation transitions. These could be associ ated with the disc atmosphere, as in accretion disc corona sources, or with a wind, as has been detected in Swift J1858.6-0814 in emission lines at optical wavelengths. Indeed, the N VII line is redshifted, consistent with being the emitting component of a P-Cygni profile. We find that the emitting plasma has an ionisation parameter $log(xi)=1.35pm0.2$ and a density $n>1.5times10^{11}$ cm$^{-3}$. From this, we infer that the emitting plasma must be within $10^{13}$ cm of the ionising source, $sim5times10^{7}r_{rm g}$ for a $1.4M_{odot}$ neutron star, and from the line width that it is at least $10^4r_{rm g}$ away ($2times10^{9}(M/1.4M_{odot})$ cm). We compare this with known classes of emission line regions in other X-ray binaries and active galactic nuclei.
We present the discovery of an optical accretion disk wind in the X-ray transient Swift J1858.6-0814. Our 90-spectrum data set, taken with the 10.4m GTC telescope over 8 different epochs and across five months, reveals the presence of conspicuous P-C yg profiles in He I at 5876 Angs and Halpha. These features are detected throughout the entire campaign, albeit their intensity and main observational properties are observed to vary on time-scales as short as five minutes. In particular, we observe significant variations in the wind velocity, between a few hundreds and ~ 2400 km/s. In agreement with previous reports, our observations are characterised by the presence of frequent flares, although the relation between the continuum flux variability and the presence/absence of wind features is not evident. The reported high activity of the system at radio waves indicates that the optical wind of Swift J1858.6-0814 is contemporaneous with the radio-jet, as is the case for the handful of X-ray binary transients that have shown so far optical P-Cyg profiles. Finally, we compare our results with those of other sources showing optical accretion disk winds, with emphasis on V404 Cyg and V4641 Sgr, since they also display strong and variable optical wind features as well as similar flaring behaviour.
Swift J1858.6-0814 is a transient neutron star X-ray binary discovered in October 2018. Multi-wavelength follow-up observations across the electromagnetic spectrum revealed many interesting properties, such as erratic flaring on minute timescales and evidence for wind outflows at both X-ray and optical wavelengths, strong and variable local absorption, and an anomalously hard X-ray spectrum. Here, we report on a detailed radio observing campaign consisting of one observation at 5.5/9 GHz with the Australia Telescope Compact Array, and nine observations at 4.5/7.5 GHz with the Karl G. Jansky Very Large Array. A radio counterpart with a flat to inverted radio spectrum is detected in all observations, consistent with a compact jet being launched from the system. Swift J1858.6-0814 is highly variable at radio wavelengths in most observations, showing significant variability when imaged on 3-to-5-minute timescales and changing up to factors of 8 within 20 minutes. The periods of brightest radio emission are not associated with steep radio spectra, implying they do not originate from the launching of discrete ejecta. We find that the radio variability is similarly unlikely to have a geometric origin, be due to scintillation, or be causally related to the observed X-ray flaring. Instead, we find that it is consistent with being driven by variations in the accretion flow propagating down the compact jet. We compare the radio properties of Swift J1858.6-0814 with those of Eddington-limited X-ray binaries with similar X-ray and optical characteristics, but fail to find a match in radio variability, spectrum, and luminosity.
We report on X-ray and radio observations of the ultra-compact X-ray binary 4U 1543-624 taken in August 2017 during an enhanced accretion episode. We obtained NICER monitoring of the source over a $sim10$ day period during which target-of-opportunity observations were also conducted with Swift, INTEGRAL, and ATCA. Emission lines were measured in the NICER X-ray spectrum at $sim0.64$ keV and $sim6.4$ keV that correspond to O and Fe, respectively. By modeling these line components, we are able to track changes in the accretion disk throughout this period. The innermost accretion flow appears to move inwards from hundreds of gravitational radii ($R_{g}=GM/c^{2}$) at the beginning of the outburst to $<8.7$ $R_{g}$ at peak intensity. We do not detect the source in radio, but are able to place a $3sigma$ upper limit on the flux density at $27$ $mu$Jy beam$^{-1}$. Comparing the radio and X-ray luminosities, we find that the source lies significantly away from the range typical of black holes in the ${L}_{{r}}$-${L}_{{x}}$ plane, suggesting a neutron star (NS) primary. This adds to the evidence that NSs do not follow a single track in the ${L}_{{r}}$-${L}_{{x}}$ plane, limiting its use in distinguishing between different classes of NSs based on radio and X-ray observations alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا