ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of the Ultra-compact X-ray Binary 4U 1543-624 in Outburst with NICER, INTEGRAL, Swift, and ATCA

62   0   0.0 ( 0 )
 نشر من قبل Renee Ludlam
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on X-ray and radio observations of the ultra-compact X-ray binary 4U 1543-624 taken in August 2017 during an enhanced accretion episode. We obtained NICER monitoring of the source over a $sim10$ day period during which target-of-opportunity observations were also conducted with Swift, INTEGRAL, and ATCA. Emission lines were measured in the NICER X-ray spectrum at $sim0.64$ keV and $sim6.4$ keV that correspond to O and Fe, respectively. By modeling these line components, we are able to track changes in the accretion disk throughout this period. The innermost accretion flow appears to move inwards from hundreds of gravitational radii ($R_{g}=GM/c^{2}$) at the beginning of the outburst to $<8.7$ $R_{g}$ at peak intensity. We do not detect the source in radio, but are able to place a $3sigma$ upper limit on the flux density at $27$ $mu$Jy beam$^{-1}$. Comparing the radio and X-ray luminosities, we find that the source lies significantly away from the range typical of black holes in the ${L}_{{r}}$-${L}_{{x}}$ plane, suggesting a neutron star (NS) primary. This adds to the evidence that NSs do not follow a single track in the ${L}_{{r}}$-${L}_{{x}}$ plane, limiting its use in distinguishing between different classes of NSs based on radio and X-ray observations alone.

قيم البحث

اقرأ أيضاً

We investigate the long-term variability of the K$alpha$ line of iron in the spectra of two Ultra Compact X-ray Sources (UCXBs) with C/O-rich donors. We revisit archival observations by five different X-ray telescopes, over a ~twenty year period. Ado pting physically motivated models for the spectral continuum, we probe the long-term evolution of the source emission in a self-consistent manner enabling physical interpretation of potential variability in the primary X-ray emission continuum and/or any emission lines from reflection off the accretion disk. We find that the spectral shape and flux of the source emission (for both objects) has remained almost constant throughout all the observations, displaying only minor variability in some spectral parameters and the source flux (largest variation is a ~25% drop in the flux of Swift J1756.9-2508). We note a striking variability of the Fe K$alpha$ line which fluctuates from a notable equivalent width of ~66-100 eV in 4U 1543-624 and ~170 eV in Swift J1756.9-2508, to non-detections with upper limits of 2-8 eV. We argue that the disappearance of the iron line is due to the screening of the Fe K$alpha$ line by the overabundant oxygen in the C/O-rich UCXBs. This effect is cancelled when oxygen becomes fully ionized in the inner disk region, resulting in the variability of the Fe K$alpha$ line in an otherwise unaltered spectral shape. This finding supports earlier predictions on the consequences of H-poor, C/O-rich accretion disk on reflection induced fluorescent lines in the spectra of UCXBs.
We report on the first simultaneous $NICER$ and $NuSTAR$ observations of the neutron star (NS) low-mass X-ray binary 4U 1735$-$44, obtained in 2018 August. The source was at a luminosity of $sim1.8~(D/5.6 mathrm{kpc})^{2}times10^{37}$ ergs s$^{-1}$ i n the $0.4-30$ keV band. We account for the continuum emission with two different continuum descriptions that have been used to model the source previously. Despite the choice in continuum model, the combined passband reveals a broad Fe K line indicative of reflection in the spectrum. In order to account for the reflection spectrum we utilize a modified version of the reflection model RELXILL that is tailored for thermal emission from accreting NSs. Alternatively, we also use the reflection convolution model of RFXCONV to model the reflected emission that would arise from a Comptonized thermal component for comparison. We determine that the innermost region of the accretion disk extends close to the innermost stable circular orbit ($R_{mathrm{ISCO}}$) at the 90% confidence level regardless of reflection model. Moreover, the current flux calibration of $NICER$ is within 5% of the $NuSTAR$/FPMA(B).
We present timing, spectral, and long-term temporal analysis of the high mass X-ray binary (HMXB) 4U 1036-56 using INTEGRAL and Swift observations. We show that it is a weak hard X-ray source spending a major fraction of the time in quiescence, and o nly occasionally characterized by X-ray outbursts. The outburst activity we report here lasts several days, with a dynamic range spanned by the luminosity in quiescence and in outburst as high as ~30. We report the detection of pulse period at 854.75+/-4.39 s during an outburst, which is consistent with previous measurements. Finally, we analyze the possibility of 4U 1036--56s association with the unidentified transient gamma-ray sources AGL J1037--5708 & GRO J1036--55, as prompted by its positional correlation.
We present the discovery of eclipses in the X-ray light curves of the X-ray binary Swift J1858.6-0814. From these, we find an orbital period of $P=76841.3_{-1.4}^{+1.3}$ s ($approx21.3$ hours) and an eclipse duration of $t_{rm ec}=4098_{-18}^{+17}$ s ($approx1.14$ hours). We also find several absorption dips during the pre-eclipse phase. From the eclipse duration to orbital period ratio, the inclination of the binary orbit is constrained to $i>70^circ$. The most likely range for the companion mass suggests that the inclination is likely to be closer to this value than $90^circ$. The eclipses are also consistent with earlier data, in which strong variability (flares) and the long orbital period prevent clear detection of the period or eclipses. We also find that the bright flares occurred preferentially in the post-eclipse phase of the orbit, likely due to increased thickness at the disc-accretion stream interface preventing flares being visible during the pre-eclipse phase. This supports the notion that variable obscuration is responsible for the unusually strong variability in Swift J1858.6-0814.
We report on multi-band observations of the transient source Swift J0840.7-3516, which was detected in outburst in 2020 February by the Neil Gehrels Swift Observatory. The outburst episode lasted just ~5 days, during which the X-ray luminosity quickl y decreased from ~3E37 erg/s at peak down to ~5E33 erg/s in quiescence (0.3-10 keV; at 10 kpc). Such a marked and rapid decrease in the flux was also registered at UV and optical wavelengths. In outburst, the source showed considerable aperiodic variability in the X-rays on timescales as short as a few seconds. The spectrum of the source in the energy range 0.3-20 keV was well described by a thermal, blackbody-like, component plus a non-thermal, power law-like, component and it softened considerably as the source returned to quiescence. The spectrum of the optical counterpart in quiescence showed broad emission features associated mainly with ionised carbon and oxygen, superposed on a blue continuum. No evidence for bright continuum radio emission was found in quiescence. We discuss possible scenarios for the nature of this source, and show that the observed phenomenology points to a transient ultra-compact X-ray binary system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا