ﻻ يوجد ملخص باللغة العربية
Concerted efforts are underway to establish an infrastructure for a global quantum internet to realise a spectrum of quantum technologies. This will enable more precise sensors, secure communications, and faster data processing. Quantum communications are a front-runner with quantum networks already implemented in several metropolitan areas. A number of recent proposals have modelled the use of space segments to overcome range limitations of purely terrestrial networks. Rapid progress in the design of quantum devices have enabled their deployment in space for in-orbit demonstrations. We review developments in this emerging area of space-based quantum technologies and provide a roadmap of key milestones towards a complete, global quantum networked landscape. Small satellites hold increasing promise to provide a cost effective coverage required to realised the quantum internet. We review the state of art in small satellite missions and collate the most current in-field demonstrations of quantum cryptography. We summarise important challenges in space quantum technologies that must be overcome and recent efforts to mitigate their effects. A perspective on future developments that would improve the performance of space quantum communications is included. We conclude with a discussion on fundamental physics experiments that could take advantage of a global, space-based quantum network.
This dissertation serves as a general introduction to Wigner functions, phase space, and quantum metrology but also strives to be useful as a how-to guide for those who wish to delve into the realm of using continuous variables, to describe quantum s
Since the invention of the laser in the 60s, one of the most fundamental communication channels has been the free-space optical channel. For this type of channel, a number of effects generally need to be considered, including diffraction, refraction,
Quantum cryptography is arguably the fastest growing area in quantum information science. Novel theoretical protocols are designed on a regular basis, security proofs are constantly improving, and experiments are gradually moving from proof-of-princi
The study of free-space quantum communications requires tools from quantum information theory, optics and turbulence theory. Here we combine these tools to bound the ultimate rates for key and entanglement distribution through a free-space link, wher
The last few decades have seen significant breakthroughs in the fields of deep learning and quantum computing. Research at the junction of the two fields has garnered an increasing amount of interest, which has led to the development of quantum deep