ﻻ يوجد ملخص باللغة العربية
Since the invention of the laser in the 60s, one of the most fundamental communication channels has been the free-space optical channel. For this type of channel, a number of effects generally need to be considered, including diffraction, refraction, atmospheric extinction, pointing errors and, most importantly, turbulence. Because of all these adverse features, the free-space channel is more difficult to study than a stable fiber-based link. For the same reasons, only recently it has been possible to establish the ultimate performances achievable in quantum communications via free-space channels, together with practical rates for continuous variable (CV) quantum key distribution (QKD). Differently from previous literature, mainly focused on the regime of weak turbulence, this work considers the free-space optical channel in the more challenging regime of moderate-to-strong turbulence, where effects of beam widening and breaking are more important than beam wandering. This regime may occur in long-distance free-space links on the ground, in uplink to high-altitude platform systems (HAPS) and, more interestingly, in downlink from near-horizon satellites. In such a regime we rigorously investigate ultimate limits for quantum communications and show that composable keys can be extracted using CV-QKD. In particular, we apply our results to downlink from satellites at large zenith angles, for which not only turbulence is strong but also refraction causes non-trivial effects in terms of trajectory elongation.
Concerted efforts are underway to establish an infrastructure for a global quantum internet to realise a spectrum of quantum technologies. This will enable more precise sensors, secure communications, and faster data processing. Quantum communication
The study of free-space quantum communications requires tools from quantum information theory, optics and turbulence theory. Here we combine these tools to bound the ultimate rates for key and entanglement distribution through a free-space link, wher
The security of real-world quantum key distribution (QKD) critically depends on the number of data points the system can collect in a fixed time interval. To date, state-of-the-art finite-key security analyses require block lengths in the order of 1E
We present a novel approach to engineer the photon correlations emerging from the interference between an input field and the field scattered by a single atom in free space. Nominally, the inefficient atom-light coupling causes the quantum correlatio
The photonic Temporal Mode (TM) represents a possible candidate for the delivery of viable multidimensional quantum communications. However, relative to other multidimensional quantum information carriers such as the Orbital Angular Momentum (OAM), t