ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Lemaitre-Tolman model and the mass and turn-around radius in group of galaxies

113   0   0.0 ( 0 )
 نشر من قبل Maksym Deliyergiyev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extended the modified Lemaitre-Tolman model taking into account the effect of angular momentum and dynamical friction. The inclusion of these quantities in the equation of motion modifies the evolution of a perturbation, initially moving with the Hubble flow. Solving the equation of motions we got the relationships between mass, $M$, and the turn-around radius, $R_0$. Knowing $R_0$, the quoted relation allows the determination of the mass of the object studied. The relationships for the case in which also the angular momentum is taken into account gives a mass $simeq 90$ % larger than the standard Lemaitre-Tolman model, and two times the value of the standard Lemaitre-Tolman model, in the case also dynamical friction is taken into account. As a second step, we found relationships between the velocity, $v$, and radius, $R$, and fitted them to data of the Local Group, M81, NGC 253, IC342, CenA/M83, and to the Virgo clusters obtained by Ref.[New Astronomy 11(4):325, A&A 488(3):845]. This allowed us to find optimized values of the mass and Hubble constant of the objects studied. The fit gives values of the masses smaller with respect to the $M-R_0$ relationship method, but in any case 30-40% larger than the $v-R$ relationship obtained from the standard Lemaitre-Tolman model. Differently from mass, the Hubble parameter becomes smaller with respect to the standard Lemaitre-Tolman model, when angular momentum, and dynamical friction are introduced. This is in agreement with Ref.[New Astronomy 11(4):325, A&A 488(3):845], who improved the standard Lemaitre-Tolman model taking into account the cosmological constant. Finally, we used the mass, $M$, and $R_0$ of the studied objects to put constraints to the dark energy equation of state parameter, $w$. Comparison with previous studies show different constraints on $w$.



قيم البحث

اقرأ أيضاً

This is the first paper of a series aiming at investigating galaxy formation and evolution in the giant-void class of the Lemaitre-Tolman-Bondi (LTB) models that best fits current cosmological observations. Here we investigate the Luminosity Function (LF) methodology, and how its estimates would be affected by a change on the cosmological model assumed in its computation. Are the current observational constraints on the allowed Cosmology enough to yield robust LF results? We use the far-infrared source catalogues built on the observations performed with the Herschel/PACS instrument, and selected as part of the PACS evolutionary probe (PEP) survey. Schechter profiles are obtained in redshift bins up to z approximately 4, assuming comoving volumes in both the standard model, that is, Friedmann-Lemaitre-Robertson-Walker metric with a perfect fluid energy-momentum tensor, and non-homogeneous LTB dust models, parametrized to fit the current combination of results stemming from the observations of supernovae Ia, the cosmic microwave background, and baryonic acoustic oscillations. We find that the luminosity functions computed assuming both the standard model and LTB void models show in general good agreement. However, the faint-end slope in the void models shows a significant departure from the standard model up to redshift 0.4. We demonstrate that this result is not artificially caused by the used LF estimator which turns out to be robust under the differences in matter-energy density profiles of the models. The differences found in the LF slopes at the faint end are due to variation in the luminosities of the sources, which depend on the geometrical part of the model. It follows that either the standard model is over-estimating the number density of faint sources or the void models are under-estimating it.
This work provides a general discussion of the spatially inhomogeneous Lema^itre-Tolman-Bondi (LTB) cosmology, as well as its basic properties and many useful relevant quantities, such as the cosmological distances. We apply the concept of the single null geodesic to produce some simple analytical solutions for observational quantities such as the redshift. As an application of the single null geodesic technique, we carry out a fractal approach to the parabolic LTB model, comparing it to the spatially homogeneous Einstein-de Sitter cosmology. The results obtained indicate that the standard model, in this case represented by the Einstein-de Sitter cosmology, can be equivalently described by a fractal distribution of matter, as we found that different single fractal dimensions describe different scale ranges of the parabolic LTB matter distribution. It is shown that at large ranges the parabolic LTB model with fractal dimension equal to 0.5 approximates the matter distribution of the Einstein-de Sitter universe.
Using wide-field $BVR_cI$ imaging for a sample of 16 intermediate redshift ($0.17 < z < 0.55$) galaxy clusters from the Canadian Network for Observational Cosmology (CNOC1) Survey, we investigate the dependence of cluster galaxy populations and their evolution on environment. Galaxy photometric redshifts are estimated using an empirical photometric redshift technique and galaxy groups are identified using a modified friends-of-friends algorithm in photometric redshift space.We utilize the red galaxy fraction (fred) to infer the evolutionary status of galaxies in clusters, using both individual galaxies and galaxies in groups. We apply the local galaxy density, sig5, derived using the fifth nearest-neighbor distance, as a measure of local environment, and the cluster-centric radius, rCL, as a proxy for global cluster environment. Our cluster sample exhibits a Butcher-Oemler effect in both luminosity-selected and stellar-mass-selected samples. We find that fred depends strongly on sig5 and rCL, and the Butcher-Oemler effect is observed in all sig5 and rCL bins. However, when the cluster galaxies are separated into rCL bins, or into group and non-group subsamples, the dependence on local galaxy density becomes much weaker. This suggests that the properties of the dark matter halo in which the galaxy resides have a dominant effect on its galaxy population and evolutionary history. We find that our data are consistent with the scenario that cluster galaxies situated in successively richer groups (i.e., more massive dark matter halos) reach a high fred value at earlier redshifts. Associated with this, we observe a clear signature of `pre-processing, in which ... <and more>
We contend that a single power law halo mass distribution is appropriate for direct matching to the stellar masses of observed Local Group dwarf galaxies, allowing the determination of the slope of the stellar mass-halo mass relation for low mass gal axies. Errors in halo masses are well defined as the Poisson noise of simulated local group realisations, which we determine using constrained local universe simulations (CLUES). For the stellar mass range 10$^7$<M*<10$^8$M$_odot$, for which we likely have a complete census of observed galaxies, we find that the stellar mass-halo mass relation follows a power law with slope of 3.1, significantly steeper than most values in the literature. The steep relation between stellar and halo masses indicates that Local Group dwarf galaxies are hosted by dark matter halos with a small range of mass. Our methodology is robust down to the stellar mass to which the census of observed Local Group galaxies is complete, but the significant uncertainty in the currently measured slope of the stellar-to halo mass relation will decrease dramatically if the Local Group completeness limit was $10^{6.5}$M$odot$ or below, highlighting the importance of pushing such limit to lower masses and larger volumes.
The Maxwell electromagnetic theory embedded in an inhomogeneous Lema^{i}tre-Tolman-Bondi (LTB) spacetime background was described a few years back in the literature. However, terms concerning the mass or high-derivatives were no explored. In this wor k we studied the inhomogeneous spacetime effects on high-derivatives and massive electromagnetic models. We used the LTB metric and calculated the physical quantities of interest, namely the scale factor, density of the electromagnetic field and Hubble constant, for the Proca and higher-derivative Podolsky models. We found a new singularity in both models, and that the magnetic field must be zero in the Proca model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا