ﻻ يوجد ملخص باللغة العربية
The Maxwell electromagnetic theory embedded in an inhomogeneous Lema^{i}tre-Tolman-Bondi (LTB) spacetime background was described a few years back in the literature. However, terms concerning the mass or high-derivatives were no explored. In this work we studied the inhomogeneous spacetime effects on high-derivatives and massive electromagnetic models. We used the LTB metric and calculated the physical quantities of interest, namely the scale factor, density of the electromagnetic field and Hubble constant, for the Proca and higher-derivative Podolsky models. We found a new singularity in both models, and that the magnetic field must be zero in the Proca model.
This paper describes the Fortran 77 code SIMU, version 1.1, designed for numerical simulations of observational relations along the past null geodesic in the Lemaitre-Tolman-Bondi (LTB) spacetime. SIMU aims at finding scale invariant solutions of the
This work provides a general discussion of the spatially inhomogeneous Lema^itre-Tolman-Bondi (LTB) cosmology, as well as its basic properties and many useful relevant quantities, such as the cosmological distances. We apply the concept of the single
The Bondi formula for calculation of the invariant mass in the Tolman- Bondi (TB) model is interprated as a transformation rule on the set of co-moving coordinates. The general procedure by which the three arbitrary functions of the TB model are dete
Boundary problem for Tolman-Bondi model is formulated. One-to-one correspondence between singularities hypersurfaces and initial conditions of the Tolman-Bondi model is constructed.
The Tolman-Bondi (TB) model is defined up to some transformation of a co-moving coordinate but the transformation is not fixed. The use of an arbitrary co-moving system of coordinates leads to the solution dependent on three functions $f, F, {bf F}$